Ясно, что уже и этого единственного заключения теории относительности вполне достаточно, чтобы возмутить «здравый смысл». Выслушав меня терпеливо, «здравый смысл» вступает в беседу.
– Что за чушь: с одной точки зрения, с другой точки зрения? Это же противоречит здравому смыслу… А на самом деле сколько времени прошло?
– Да нисколько, так спрашивать нельзя.
– Ну, знаете! Как это – нельзя? Вздор!
– Но, позвольте, ведь есть много вещей, про которые спрашивать нельзя. Скажем, ведь вы согласны, что бессмысленно спрашивать, какой город ближе – Ленинград или Париж. Для нас, жителей Москвы, Ленинград ближе Парижа, а население Марселя не сомневается, что Париж у них под боком, а Ленинград далековато.
– Ну, да это совсем другое дело.
– Другое?! Да нет, очень похожее. На вопрос, не имеющий смысла, нельзя дать ответа.
– Но почему вопрос о том, сколько на самом деле прошло времени между выстрелом и попаданием в цель, лишен смысла? Ведь время…
– Да, да, пожалуйста, ведь время… Вы, кажется, хотели сказать, что такое время?
– Ведь время – это… да не спрашивайте про пустяки, всякий знает, что такое время… Ну, в конце концов время – это то, что меряется часами.
– Превосходно, совершенно правильно. Лучшего ответа нам и не надо. С этого ведь я и начал объяснение. Я просил вас только обратить внимание на то, что каждый носит свои часы при себе и о своем времени судит легко. А вот о чужом времени…
– Свое время, чужое… Не влезает мне это в голову. Время одно.
– Уфф! Ну как же одно? У первого путешественника свои часы, а у второго свои, и если они хотят сверить часы, то одному из них надо послать сигнал другому. Ведь я же вам это объяснял: один смотрит, сколько времени заняло событие, по своим часам, а второй – тот, что движется, – посылает сигналы, сколько времени показали его часы в начале и конце события. Так мы и пришли к выводу, что интервал между событиями, измеренный по своим часам, будет больше.
– Вы все про часы, а я про время. Ведь время…
– Ну что, ведь время? Вы же согласились, что время – это то, что измеряется часами.
– Нет и нет, не запутывайте меня, пожалуйста. Я чувствую, что здесь что-то не так. Не укладывается у меня это в голове.
Да, тяжело бороться со здравым смыслом. Но спорить с тем, кто отбрасывает строгую логику рассуждения в угоду безапелляционно принятым «истинам», – это как об стену горохом. Разумеется, выводы теории относительности с изумлением, восторгом и преклонением перед мощью аналитического разума были быстро подхвачены тысячами физиков, которые, проверив логическую нить Эйнштейна, не нашли в ней ни малейшего изъяна.
Но сторонники здравого смысла продолжали негодовать, возмущаться, требовать «других доказательств» еще долгие годы (поразительно, что даже и сейчас изредка слышатся их голоса). А в этих «других доказательствах» недостатка не было. Они появились в совершенно неограниченном числе много времени спустя, когда физики начали работать с частицами, движущимися с околосветовой скоростью.
Я остановился лишь на выводе теории, касающемся промежутков времени. Но столь же строго из основных постулатов теории относительности следовали и другие революционные выводы. Среди них – заключение о возрастании массы частицы с увеличением скорости ее движения и заключение об эквивалентности энергии и массы.
Проще всего было подтвердить на эксперименте возрастание массы частиц. Это уже давно было проделано для электронов. Проверка же закона эквивалентности стала возможной, когда физики занялись ядерными превращениями и уравнение Эйнштейна легло в основу всех расчетов ядерных реакций. В последнюю очередь стала возможной в лабораторных условиях непосредственная проверка сокращения интервала времени для движущейся частицы.
Впрочем, уже много лет никто (за редчайшими исключениями) из физиков не смотрит на эти эксперименты, как на проверку теории. Она получила безоговорочное признание, стала основой будничной работы физиков.
Но значение теории относительности для физики выходило за рамки открытия нового закона природы. Она повлекла за собой постепенное изменение психологии исследователей, работающих в области естествознания. Физики стали крайне осторожно относиться к заверениям здравого смысла. Они начали приучаться ощупывать со всех сторон каждую фразу, претендующую на объективное значение. Они стали бояться слов, пустых слов, под которыми нет ничего. Прочувствовали необходимость удаления из науки даже ничтожных следов аристотелевой атмосферы.
На примере с парадоксом времени физики поняли, что любое понятие, фигурирующее в их уравнениях, должно либо отвечать на вопрос: «А как его измерить?», либо быть связанным с измеряемыми величинами функциональными зависимостями.
Если сказано, каким образом величину можно измерить или вычислить, то к этому добавить больше нечего. Природа объективна, то есть она существует помимо исследователя; а вот физические величины предложены и введены в обиход наблюдателем природы, с тем чтобы как можно лучше ее описывать.
Постепенно, хотя гораздо медленнее, чем шло развитие науки, из учебников начали устраняться пустые определения, бессодержательный набор слов, определения, которые создавали впечатление, что за словом что-то скрывается, что слово имеет внутренний, подлежащий раскрытию смысл.
– Что такое сила? – вопрошал учитель.
– Сила – это физическая величина, измеряемая по растяжению пружины, – отвечал ученик, и совсем неплохо отвечал.
– Да нет, – настаивал учитель, – вы сказали, как измерить силу. А я спрашиваю, что такое сила?
– Сила – это… это натиск, это действие, это причина движения, – мямлил ученик, вспоминая, что написано в учебнике.
– Вот это хорошо, – радовался учитель.
А хорош-то ответ первый. Остальное же – бессодержательные, пустые утверждения.
После урока, преподнесенного теорией относительности, физические построения стали неизмеримо яснее и строже. Схема физического объяснения явления получила четкие черты.
Мне несколько раз приходилось по просьбе Министерства просвещения присутствовать на экзаменах школьников по физике. Когда попадался ученик довольно сильный, я просил разрешения у учителей задать ему несколько вопросов.
– Что произойдет с медным стержнем, если его нагреть?
– Он расширится, – отвечал экзаменующийся, думая, а нет ли в этом простом вопросе подвоха.
– Почему?
– Все тела при нагревании расширяются.
– Превосходно, а почему?
Ученик задумывался.
– Атомы при нагревании движутся быстрее, в результате они как бы расталкиваются, среднее расстояние между ними растет, а значит, и размеры тела возрастут.
– Великолепно, – здесь я делал небольшую паузу, – а скажите, почему атомы движутся быстрее при нагревании?
Замешательство. Молчание. Ученик бросает беспомощные взгляды на учителя, во взоре безмолвный упрек: «Ты же нам про это не говорил». Учитель тоже выбит из седла и духмает: «Принесла тебя нелегкая с каверзным вопросом – почему атомы движутся быстрее! А кто же его знает, почему».
И только один ученик из десяти, недоуменно пожав плечами, отвечал:
– Да ведь убыстрение движения частиц с температурой – это основной закон природы.
Правильно, дорогой! Только этого я от тебя и хотел. Ты правильно понял, что физическая схема объяснения явления заключается в сведении частного к общему, в логическом показе, что данное явление есть частный случай общего закона природы. А общий закон природы – это сегодняшний потолок объяснения. Общий закон природы потому так и называется, что его неоткуда вывести. А раз неоткуда вывести, значит нельзя объяснить. Разумеется, такое положение дел может быть временным, потолок объяснения по мере развития науки имеет тенденцию к возвышению. То, что сегодня выглядит общим законом природы, через несколько лет может оказаться следствием открытого еще более общего закона природы, для которого старый закон – лишь частный случай. Так было с законами движения Ньютона. После открытия Эйнштейна мы смотрим на уравнения Ньютона как на частный случай законов движения при малых скоростях.