Гребной винт состоит из трех-четырех лопастей и ступицы.
Как же работает гребной винт?
У колесного парохода видно, чем и как он гребет. У него по бортам колеса, насаженные на вал машины, идущий поперек судна. Лопастями своих колес пароход загребает воду, будто веслами. А у винтового вы видите за кормой только мощный поток бурлящей воды. Это гребной винт, сидящий глубоко в воде, вращаясь, ввинчивается в нее, с силой отталкивает воду назад, а судно движет вперед. Эта сила — упор винта, через специальный упорный подшипник на валу, передается всему пароходу.
Очень много значат для нормальной работы гребного винта правильно подобранные размеры и форма его лопастей. Вот какой случай произошел с нашим выдающимся кораблестроителем — академиком А. Н. Крыловым. Однажды он плыл на новом английском судне. Капитан этого судна был мрачен и очень неохотно отвечал на все вопросы Крылова.
Видимо, он чем-то был недоволен. В конце концов удалось выяснить причину плохого настроения капитана. Оказывается, его раздражала малая скорость парохода.
«Вы понимаете, — сердито говорил капитан, — как это неприятно: идти со скоростью черепахи на судне, которое по всем своим данным должно быть быстроходным. В чем здесь дело, ума не приложу». Крылов сочувственно слушал капитана. Ему была понятна печаль старого моряка. И он решил помочь ему. Когда пароход пришел в Англию, Крылов направился в контору общества, которому принадлежало судно, и увидел там модель злосчастного парохода. Модель в точности воспроизводила все устройство судна, но, конечно, с уменьшением (в 100 раз). Крылову сразу же бросилось в глаза, что у парохода винт непомерно велик. Он порекомендовал владельцу судна обрезать каждую лопасть винта на 200 миллиметров. Судовладелец послушался и потом не раскаивался в том, что доверился русскому ученому. Стоило уменьшить лопасти винта, и пароход стал давать скорость на несколько узлов больше. Оказывается, диаметр винта был подобран неправильно.
— Как вы могли так искусно определить болезнь моего судна? — спросил изумленный судовладелец.
— Я тридцать два года читаю «Теорию корабля» в Морской Академии в Ленинграде! — просто ответил Крылов.
Конструкторы много трудятся над тем, чтобы улучшить работу винта и этим увеличить скорость парохода без повышения мощности двигателя. Они пытаются создать и такие суда, где можно обойтись вообще без гребных винтов, колес и даже без рулей.
Вот какую картину можно было наблюдать однажды на реке Ман, южнее Красноярска. Тишину реки нарушил рокот мотора. Из-за поворота показался небольшой катер. Неожиданно ему преградило дорогу препятствие — нагромождение бревен. Но катер не остановился и не свернул. Подминая с полного хода под себя бревна, он вошел в самую гущу затора.
Катер вошел в самую гущу затора.
При таких условиях плавания у любого судна обязательно бы разлетелся вдребезги винт и он потерял бы всякую возможность двигаться и управляться. Но в том-то и дело, что у катера винта не было. Не было у него и машины с валами и руля. Вместо всего этого катер имел только мощный насос.
Этот насос через приемные отверстия в днище втягивает воду, а затем с огромной силой выталкивает ее через корму, а катер получает движение вперед. Такая установка называется водометной или реактивной.
Конструкторы создают и такие устройства, которые помогают небольшим винтовым судам развивать необычайно высокую скорость.
К таким устройствам относятся, например, подводные крылья. На заводе «Красное Сормово» в Горьком уже построен катер «Ракета». У него под корпусом два несущих крыла. На малой скорости хода такой катер движется как обычное судно. Но вот скорость катера увеличивается до 30 километров в час. Большей скорости из этого винта, казалось бы, выжать нельзя. Но тут и вступают в действие подводные крылья. Они, как крылья самолета, создают подъемную силу и выталкивают корпус катера из воды. Он как бы повисает над поверхностью воды. Погруженными в воду остаются только крылья, гребной винт и руль.
Благодаря этому сопротивление воды движению катера резко уменьшается, а скорость его увеличивается со сказочной быстротой: шестьдесят… восемьдесят… сто километров в час. Стремительно проносится катер вдоль живописных берегов.
Крылатый катер стремительно проносится мимо.
Инженеры считают допустимым создание и морских судов с подводными крыльями. Возможно, пройдет несколько лет, и на океанских просторах будут мчаться со скоростью 100 километров в час и более пассажирские экспрессы. Люди будут пересекать Атлантический океан самое большее за два дня.
Интересно напомнить, что переход через океан на парусных судах XV века совершался за 70 дней; первый пароход затратил на это 26 дней, а построенный в 1952 году лайнер «Юнайтед Стейтс» такой переход делает за 3 дня и 15 часов. Это огромный корабль длиною в 302 метра. 160 000 лошадиных сил его двигателей вращают четыре винта.
Но мы уже знаем, что паровая машина такой мощности обеспечить не может. Возникает вопрос: какие же там стоят двигатели?
Оказывается, на нем, как и на всех особо мощных и быстроходных боевых и транспортных судах, стоят не поршневые паровые машины, а паровые турбины.
Еще совсем недавно паровые турбины казались чудом современной техники. Давайте посмотрим, что это такое.
Пароход — турбоход
На протяжении всего XIX века изобретатели упорно, но безуспешно работали над тем, чтобы добиться возможно большей мощности от паровой машины. Это надо было сделать для того, чтобы крупные пароходы могли ходить с высокой скоростью. Рост кораблей обгонял возможности паровой машины. Все эти старания не дали нужных результатов.
Однако в конце концов кораблестроители выяснили, что этой цели можно достигнуть только в том случае, если соорудить паровую машину таких размеров, что она займет весь пароход.
Ясно, что на такой путь увеличения мощности машины становиться было нельзя.
Дело в том, что работа пара в самых лучших машинах используется всего на одну пятую его энергии. Поэтому-то и нельзя было добиться даже от самой, казалось бы, большой машины мощности больше 5000 лошадиных сил.
Мы уже знаем, что пар поступает в цилиндр машины через золотники. Поступает отдельными порциями. Поэтому поршень цилиндра получает от расширяющегося пара не непрерывный нажим, а отдельные толчки.
Кроме того, из-за малой высоты цилиндра каждая порция пара действует очень незначительное время. Да и скорость перемещения поршня в цилиндре при этом невелика — не более 5–7 метров в секунду.
Если ставить очень высокий цилиндр, чтобы пар поработал, разгоняя поршень, подольше, то опять придется увеличивать размеры машинного отделения и всего парохода в целом.
Вот хорошо бы иметь такой двигатель, в котором пар действовал бы равномерно в течение всего времени работы этого двигателя! Да и двигался бы побыстрее. Тогда мощность двигателя неизмеримо повысилась бы.
Такой двигатель с постоянно действующим паром, названный паровой турбиной, был создан в конце прошлого столетия. В этом двигателе, делающем несколько тысяч оборотов в минуту, пар мчится в 40 раз быстрее, чем в паровой машине.
Так что назвали его турбиной не случайно: по-латыни «турбо» означает «вихрь». И что интересно: проект турбины одновременно разработали два человека, совершенно не знавшие друг друга. Это были шведский инженер Г. Лаваль и англичанин Ч. Парсонс.
Моряки рассказывают такую историю. В 1897 году на Дуврском рейде для торжественного парада по случаю юбилея королевы Виктории выстроился английский флот. Могучие броненосцы и стремительные крейсеры замерли в ожидании яхты королевы. Все было наготове.