Солнцу его запасов хватит еще на пять миллиардов (при том, что нашему светилу уже «стукнуло» примерно столько же). Самые же маломассивные звезды (они примерно в десять раз легче Солнца) теоретически могут растянуть свой скромный водородный запас на сотни и тысячи миллиардов лет.

Рано или поздно эпоха сияния завершается. В конце эволюционной дороги звезды, так или иначе, сбрасывают внешние слои, а центральное ядро превращается в белого карлика, нейтронную звезду или черную дыру.

Последний этап существования одиночной звезды предопределен с самого начала – жизненный путь и его финал определяются ее массой. Солнце и подобные ему звезды с массой до 8-10 солнечных умирают относительно спокойно. Они медленно сбрасывают внешние слои, как увядающие цветы. Более массивные взрываются, превосходя на какое-то время по яркости целую галактику. Эта короткая вспышка – взрыв сверхновой.

Ученые мало знают о том, как в подробностях выглядит процесс рождения звезд разных масс, но, наверное, еще меньше они знают о взрывах сверхновых.

Журнал

Инфракрасное изображение планеты у бурого карлика, полученное в 2004 году

Планета около бурого карлика

В последние 10 лет экзопланеты стали одной из самых горячих тем в астрономии. Открыто уже множество звезд, вокруг которых крутятся планеты. Однако получить картинку, на которой можно было бы указать пальцем: «Вот она!» – нелегко. Дело в том, что свет звезды мешает разглядеть планету. Чем слабее звезда, тем больше у нас шансов зарегистрировать ее слабый спутник. А в случае холодных карликов их еще больше. Неудивительно, что первая планета, которую удалось непосредственно увидеть, вращается именно вокруг бурого карлика. В 2004 году международная группа астрономов наконец-то получила желанный снимок. Сделать это удалось на 8,2-метровом телескопе «Йепун» (Yepun) в Чили – это один из четырех больших инструментов, составляющих систему VLT. Около бурого карлика 2MASSWJ1207334-393254 был обнаружен слабый объект. Наблюдения проводились в ИК-диапазоне. Расстояние от нас до коричневого карлика составляет 70 пк (около 230 световых лет). Правда, поначалу не было полной уверенности, что телескопы видят планету, а не фоновый источник. Понадобилось несколько месяцев наблюдений, чтобы доказать, что они движутся вместе. Расстояние от карлика до слабого объекта около 55 астрономических единиц. Масса его в разных моделях оказывается различной, от одной до десяти масс Юпитера. Соответственно, можно назвать такой объект планетой-гигантом. Отметим, что масса самого 2MASSWJ1207334-393254 составляет примерно 25 масс Юпитера.

Журнал

Красивейшая туманность Кошачий Глаз (NGC 6543), сфотографированная космическим телескопом «Хаббл». Это скопление пыли и газа находится на расстоянии 3 000 световых лет от Земли

Мертвое море

Наверное, нет в астрономии объектов красивее, чем так называемые планетарные туманности. Они похожи на тончайшее кружево, на отлетевшую «душу» сгоревшего солнца. Перламутр туманности медленно рассеивается, чтобы, возможно, когда-нибудь войти в состав новой звезды, а в центре брошенной жемчужиной остается мертвое солнце – белый карлик. Так заканчивается жизненный цикл не слишком тяжелых звезд.

Белые карлики были открыты еще в XIX веке. Однако объяснить их природу удалось, лишь используя физику XX. Они стали первыми известными макрообъектами, живущими по квантовым законам. Неудивительно, что создание теории белых карликов было отмечено Нобелевской премией.

Первым открытым карликом стал спутник ярчайшей на земном небе звезды Сириус из созвездия Большого Пса. В движении Сириуса были замечены странные отклонения. «Песья» звезда двигалась по небу «валкой походкой». Обычно звезды, да и вообще небесные тела, так себя не ведут: что-то должно было заставлять Сириус сбиваться с прямого пути. Стало очевидно, что у него есть невидимый массивный спутник. Невидимым, правда, он оставался недолго. В телескопы удалось рассмотреть слабую белую звездочку. Именно белый цвет этого источника стал причиной того, что все объекты этого типа теперь называют белыми карликами, невзирая на их цвет.

Как известно, цвет звезды напрямую связан с ее температурой. У белых карликов нет источников энергии: они светят только за счет запасенного тепла. По мере остывания их цвет изменяется от белого до красного. По прошествии достаточно большого времени получится почти черный карлик. «Почти» – потому что на самом деле по-настоящему черным реальный карлик вряд ли станет.

Журнал

Процесс перетекания вещества с красного гиганта на белый карлик. Когда масса последнего превысит полторы массы Солнца, он свернется, превратившись в нейтронную звезду, и засияет на краткий миг, как целая галактика

Его температура даже за миллиарды лет не упадет ниже нескольких тысяч градусов, а ведь нашей Галактике всего 12 миллиардов лет. Кроме того, падение (аккреция) вещества из межзвездной среды на поверхность карлика приводит к его разогреву и поддержанию постоянной температуры. Наличие же у карлика водородной атмосферы может, при глубоком остывании, делать источник на вид менее красным, чем ему полагается быть в соответствии с его температурой и законом Планка. Это происходит из-за образования молекулярного водорода, поглощающего инфракрасное излучение.

Самый холодный из известных белых карликов имеет температуру около 3 000 К, то есть почти в два раза холоднее верхних слоев Солнца. Но надо помнить, что чем холоднее карлик, тем труднее его заметить. Поскольку белые карлики фактически являются «трупами» многочисленных маломассивных звезд, их в Галактике немало: в Млечном Пути – до 10% всех звезд. В окрестностях Солнца пространственная плотность белых карликов составляет примерно 0,005 на кубический парсек, что означает, что на расстоянии до 20 парсек (примерно 65 световых лет) от нас должно быть около 170 таких объектов, из которых более сотни нам уже известно. В пределах 13 парсек (почти точно) найдены все белые карлики. Если карлик входит в состав тесной двойной системы, то на него может перетекать вещество со звезды-соседки. В этом случае могут наблюдаться разные интересные типы источников. Самыми известными, вероятно, являются «новые» звезды, когда водород накапливается на поверхности белого карлика и там со временем происходит термоядерный взрыв. Светимость системы возрастает скачком, и появляется как бы новая звезда.

Если же белый карлик одинок, то он достаточно быстро становится слабым и тусклым объектом. Старые источники этого типа в десятки тысяч раз слабее Солнца, которое само по себе является заурядным желтым карликом. Тем не менее современные телескопы позволяют разглядеть белые карлики на большом расстоянии, даже если они уже успели изрядно остыть. Изучение подобных объектов дает много важной информации об истории нашей Галактики, особенно о раннем периоде. Их исследование позволяет определить возраст диска Галактики и различных скоплений, в которых наблюдаются белые карлики.

Журнал

Схематическое изображение пульсара – быстро вращающейся нейтронной звезды. При наличии сильного магнитного поля такая звезда излучает мощные периодические радиоимпульсы

Восставшие из ада

После ярости взрыва сверхновой, когда, казалось бы, жизнь звезды завершена, часто остаются удивительные объекты – нейтронные звезды, которые изучаются уже 40 лет. Сверхсильные магнитные поля, сверхплотное вещество в недрах и сверхсильная гравитация на поверхности – вот их уникальные свойства. Первые открытые нейтронные звезды были радиопульсарами или рентгеновскими источниками в тесных двойных системах. И за открытие радиопульсаров, и за исследования первых рентгеновских источников были вручены Нобелевские премии. За изучение нейтронных звезд была присуждена еще и третья премия – Халсу и Тейлору за открытие и исследования первого двойного радиопульсара (системы из двух нейтронных звезд, идеальной лаборатории для проверки Общей теории относительности).


Перейти на страницу:
Изменить размер шрифта: