Вопреки всеобщей скорби при известии о смерти адмирала Нельсона, граф Сен-Винсент и еще восемнадцать адмиралов британского королевского флота отказались прийти на его похороны.
Сколько у человека чувств?
Как минимум девять.
Пять — те, что всем нам известны, то есть зрение, слух, вкус, обоняние и осязание — были впервые перечислены еще Аристотелем, который, будучи выдающимся ученым, все же нередко попадал впросак. (К примеру, согласно Аристотелю, думаем мы с помощью сердца, пчелы происходят от разлагающихся туш быков, а у мух всего по четыре лапки.)
По общепринятому мнению, у человека есть еще четыре чувства.
1. Термоцепция — чувство тепла (или его отсутствия) на нашей коже.
2. Эквибриоцепция — чувство равновесия, которое определяется содержащими жидкость полостями в нашем внутреннем ухе.
3. Ноцицепция — восприятие боли кожей, суставами и органами тела. Странно, но сюда не относится мозг, в котором вообще нет чувствительных к боли рецепторов. Головные боли — независимо от того, что нам кажется, — исходят не изнутри мозга.
4. Проприоцепция — или «осознание тела». Это понимание того, где находятся части нашего тела, даже мы не чувствуем и не видим их. Попробуйте закрыть глаза и покачать ногой в воздухе. Вы все равно будете знать, где находится ваша ступня по отношению к остальным частям тела.
Каждый уважающий себя невропатолог имеет свое собственное мнение насчет того, существуют ли еще какие-то чувства, кроме этих девяти. А некоторые вообще убеждены, что их не меньше двадцати одного. Скажем, как насчет чувства голода? Или жажды? Чувства глубины? Чувства смысла? Языка? Или бесконечно интригующая синестезия, когда чувства сталкиваются и переплетаются так, что музыка начинает восприниматься в цвете?
А как насчет чувства электричества? Или чувства опасности — когда волосы становятся дыбом?
Кроме того, существуют чувства, которые есть у некоторых животных, но отсутствуют у людей. Акулы, например, обладают сильной электроцепцией, позволяющей им чувствовать электрические поля; магнитоцепция определяет поля магнитные и используется в системах навигации птиц и насекомых; эхолокация и «боковая линия» практикуются рыбами для ориентации, а инфракрасное зрение необходимо оленям и совам для ночной охоты или поиска пищи.
Сколько у вещества агрегатных состояний?
Три — что может быть проще? Твердое, жидкое и газообразное?
На самом же деле их не меньше пятнадцати, причем список продолжает расти практически с каждым днем.
Вот наши последние «наилучшие усилия»:
Твердое, аморфное твердое, жидкое, газообразное, плазма, сверхтекучее, сверхтвердое, вырожденное вещество, нейтрониум, сильно симметричное вещество, слабо симметричное вещество, кварк-глюонная плазма, фермионный конденсат, конденсат Бозе-Эйнштейна и странное вещество.
Если не вдаваться в непостижимые (и для большинства из нас абсолютно ненужные) детали, одним из наиболее забавных агрегатных состояний вещества является бозе-эйнштейновский конденсат.
Конденсат Бозе-Эйнштейна (который зачастую называют «бозе-конденсат», или попросту «бэк») возникает, когда вы охлаждаете тот или иной химический элемент до чрезвычайно низких температур (как правило, до температуры чуть выше абсолютного нуля, минус 273 градуса по Цельсию, — теоретическая температура, при которой все перестает двигаться).
Вот тут с веществом начинают происходить совершенно странные вещи. Процессы, обычно наблюдаемые лишь на уровне атомов, теперь протекают в масштабах, достаточно крупных для наблюдения невооруженным глазом. Например, если поместить «бэк» в лабораторный стакан и обеспечить нужный температурный режим, вещество начнет ползти вверх по стенке и в конце концов само по себе выберется наружу.
Судя по всему, здесь мы имеем дело с тщетной попыткой вещества понизить собственную энергию (которая и без того находится на самом низком из всех возможных уровней).
Теоретическая возможность существования бозе-конденсата была предсказана Альбертом Эйнштейном еще в 1925 году, после изучения работ Шатьендраната Бозе, однако получить его экспериментально удалось лишь в 1995 году в Америке — за эту работу его создателям была присуждена Нобелевская премия по физике 2001 года. Сама же рукопись Эйнштейна, считавшаяся утерянной, была обнаружена лишь в 2005-м.
Каково нормальное состояние стекла?
Твердое.
Возможно, вы не раз слышали, что стекло — жидкость, которая остыла, но не кристаллизовалась и которая просто течет фантастически медленно. Это неверно — стекло bona fide (По-настоящему, поистине (лат.).) твердое.
В подтверждение заявлений о том, что стекло — жидкость, люди часто приводят в пример церковные витражи: указывают на нижнюю часть окна, где стекло толще.
Однако причина здесь вовсе не в том, что стекло со временем перетекло вниз. У средневековых стекольщиков порой просто не получалось отлить идеально равномерные стеклянные листы. В таких случаях они вставляли стекло в витраж толстым краем к полу — по вполне понятным причинам.
Путаница насчет того, считать стекло жидкостью или твердым телом, возникла от неверного прочтения работы немецкого физика Густава Тамманна (1861 — 1938), изучавшего свойства стекла и описавшего его поведение по мере затвердевания.
Согласно наблюдениям Тамманна, молекулярная структура стекла неупорядоченная — в отличие от четкого и аккуратного расположения молекул, скажем, в металлах.
Ища аналогию, ученый сравнил стекло с «переохлажденной жидкостью». Но сказать, что стекло похоже на жидкость, вовсе не означает, что стекло и есть жидкость.
В наши дни твердые тела подразделяют на кристаллические и аморфные. Стекло — это аморфное твердое тело.
Какой металл является жидким при комнатной температуре?
Помимо ртути, жидкими при комнатной температуре могут быть также галлий, цезий и франций. Поскольку все эти жидкости очень плотные (металлы все-таки), кирпичи, лошадиные подковы и пушечные ядра теоретически будут в них плавать.
Галлий (Ga) был открыт в 1875 году французским химиком по имени Лекок де Буабодран. Все, конечно, считали, что название нового элемента навеяно чисто патриотическими соображениями, однако на самом деле слово gallus по-латыни означает и «галл» («француз»), и «петух» — то же, что и «Lecoq» («Лекок»). Галлий стал первым химическим элементом, подтвердившим предсказанную Дмитрием Менделеевым периодическую таблицу. Из-за уникальных электронных характеристик галлий главным образом используют в кремниевых микросхемах. Его также применяют в проигрывателях компакт-дисков, поскольку в смеси с мышьяком галлий трансформирует электрический ток в лазерный луч, который и «считывает» информацию с поверхности диска.
Наиболее заметная область применения цезия (Cs) — атомные часы. Здесь цезий используется для определения атомной секунды. При контакте цезия с водой происходит крайне интенсивный взрыв. Слово «цезий» обозначает «небесно-голубой» — из-за ярко-голубых линий в его спектре. Впервые это явление было отмечено в 1860 году немецким ученым Робертом Бунзеном. Бунзен использовал спектроскоп, который изобрел вместе с Густавом Кирхгофом — человеком, доказавшим, что сигналы по телеграфным проводам проходят со скоростью света.
Франций (Fr) — один из самых редких химических элементов: по подсчетам ученых, на Земле он присутствует в количестве всего тридцати граммов. Это связано с тем, что франций столь радиоактивен, что моментально распадается, превращаясь в другие, более устойчивые элементы. В общем, металл этот жидкий, но ненадолго — максимум на пару секунд. Франций был выделен в 1939 году Маргерит Пере, работавшей в Институте Кюри в Париже. Он был последним элементом из найденных в природе.
Все эти химические элементы становятся жидкими при необычайно низких для металлов температурах, поскольку электроны в их атомах расположены таким образом, что им чрезвычайно трудно приблизиться друг другу и сформировать кристаллическую решетку.