Собственно электроны, всего около семидесяти штук с энергией в диапазоне 300–800 гигаэлектронвольт, были зарегистрированы в небе Антарктики еще в 2000 и 2003 году с помощью ATIC - тонкопленочного ионизационного калориметра, запускаемого в стратосферу на воздушном шаре, что позволяет избежать поглощения частиц с высокой энергией атмосферой. Статья же была опубликована лишь сейчас, поскольку необычные результаты требовали тщательного анализа и интерпретации.

Космические лучи состоят из протонов, электронов и ионов, большинство из которых приобретают огромную скорость и энергию в основном в остатках взрывов сверхновых. Энергия различных космических частиц обычно убывает по степенному закону. Например, легкие электроны, путешествуя по Вселенной, сравнительно быстро теряют энергию в результате синхротронного излучения и обратного Комптоновского рассеяния. Поэтому они недолго сохраняют высокую скорость и могут попасть к нам от источника, расположенного не дальше трех тысяч световых лет.

Журнал "Компьютерра" №761 _761-29.jpg

Тем более удивителен зарегистрированный приборами всплеск энергий электронов с максимумом на 620 ГэВ, который не вписывается в обычную теорию. Его можно объяснить только наличием сравнительно недалеко от Земли пока не обнаруженного объекта вроде пульсара, микроквазара или черной дыры средних размеров, которые, в принципе, способны разогнать электроны до таких энергий.

Однако самые горячие ученые головы утверждают, что этот пик свидетельствует об аннигиляции экзотических тяжелых частиц темной материи с подходящей массой в гало нашей галактики. Благо в теориях, предсказывающих существование различных темных частиц, нет недостатка, а частицы Калуцы-Клейна как раз подходят по энергиям. Впрочем, недавно сообщалось о регистрации в космических лучах необычных позитронов с энергией до ста гигаэлектронвольт с помощью спутника PAMELA. Те позитроны тоже можно интерпретировать как результат аннигиляции темной материи.

Разумеется, пока трудно понять, откуда на самом деле в космических лучах взялись эти частицы, и только дальнейшие наблюдения помогут в этом разобраться. Быть может, ученым удастся объяснить необычные результаты и без привлечения темной материи. ГА

Курс - на Юпитер!

Юпитер, являющийся самой большой планетой Солнечной системы, изучался только аппаратами NASA: в 1970-х свою лепту в его исследование внесли "Пионеры"и "Вояджеры", а позднее - корабли "Улисс"и "Кассини". С 1995 года планета восемь лет целенаправленно изучалась аппаратом "Галилео". А теперь Агентство утвердило новую миссию к газовому гиганту - "Юнона" (в древнеримской мифологии - супруга Юпитера, покровительница брака и рождения).

"Юнона", как ожидается, станет уникальной экспедицией. Впервые межпланетный зонд будет вращаться по сильно вытянутой эллиптической полярной орбите вокруг гигантской планеты, что поможет лучше изучить структуру Юпитера, особенности его атмосферы и протекающие в ней процессы. Другая особенность аппарата - высокая энергетическая эффективность: несмотря на то что объект внимания зонда удален от нашего светила на расстояние более 644 млн. километров, питаться корабль будет от солнечных батарей.

Старт ракеты-носителя "Атлас"с аппаратом "Юнона"запланирован на август 2011 года, а на орбиту Юпитера зонд выйдет только спустя пять лет. Если все пойдет по плану, за год "Юнона"сделает 32 витка вокруг планеты. За это время мощная камера и девять других научных инструментов, размещенных на борту аппарата, должны собрать максимально возможное количество информации. Ученые надеются обнаружить у Юпитера твердое ядро, изучить его сильную магнитосферу и выполнить другие измерения. Массивность Юпитера позволила ему сохраниться почти в первозданном виде, поэтому, полагают специалисты, исследование газового гиганта поможет пролить свет на историю Солнечной системы.

О том, в какую сумму обойдется реализация миссии "Юноны", в Агентстве скромно умалчивают, отмечая лишь, что этот космический аппарат будет вторым, разработанным в рамках программы "Новые горизонты" (New Frontiers). Первым стал зонд, отправившийся в начале 2006 года к Харону, спутнику Плутона: своей цели он должен достигнуть в 2015 году. ВГ

Орган с собственного огорода

Новость, получившая широкую огласку в середине ноября, стала счастливым завершением событий, происходивших около пяти месяцев назад. Столько времени потребовалось, чтобы убедиться в успехе операции с использованием поистине пионерской технологии.

Журнал "Компьютерра" №761 _761-31.jpg

Тридцатилетняя испанка Клаудиа Кастильо (Claudia Castillo) страдала туберкулезом. Болезнь вызвала сильное поражение левого бронха - "воздуховода", ведущего к легкому. Из-за этого пациентка не могла полноценно использовать свое левое легкое, и при обычном лечении потребовалось бы его удаление. Такая операция существенно ограничивает трудоспособность - проблемой становится даже быстрая ходьба. Ситуацию могла частично облегчить пересадка донорской трахеи. Однако люди, которым пересадили донорские органы, до конца своих дней вынуждены принимать лекарства, подавляющие иммунитет, и опасаться отторжения пересаженного органа.

Все наше тело - клон из миллиардов клеток, в которые развилась (в типичном случае) одна-единственная оплодотворенная яйцеклетка. В ходе нормального развития эти клетки размножаются, взаимодействуют друг с другом и формируют каждого из нас. По окончании очередного этапа развития включаются механизмы, защищающие тело от аномалий роста - например, опухолей. Способность большинства клеток к размножению и специализации снижается до предела, допустимого с точки зрения безопасности организма. Лишь немногие клетки - стволовые - сохраняют способность к многочисленным делениям, так как в их функции входит производство быстро изнашивающихся клеток-потомков, таких как клетки крови. И после этого травмы и болезни начинают вырывать из наших тел кусок за куском.


Перейти на страницу:
Изменить размер шрифта: