Вообще, по пропускной способности интерконнект почти дошел до разумного предела: так, постепенно появляющиеся на рынке 10-гигабитные адаптеры Ethernet вплотную подобрались к скоростям внутренних шин компьютера, и если создать некий гипотетический 100-гигабитный Ethernet, то не найдется ни одного компьютера, способного пропустить через себя такой огромный поток данных. Но на практике десятигигабитная локальная сеть, несмотря на всю свою перспективность, встречается редко - технология Ethernet допускает использование только топологии «звезда», а в подобной системе центральный коммутатор, к которому подключаются все остальные элементы, обязательно будет узким местом. Кроме того, у Ethernet-сетей довольно большая латентность[Время между отправкой запроса одним узлом и получением этого запроса другим узлом], что тоже затрудняет их использование в «тесно связанных» задачах, где отдельные вычислительные узлы должны активно обмениваться информацией. Поэтому несмотря на почти предельную пропускную способность Ethernet-решений в кластерах широко используются сети со специфической топологией - старая добрая Myrinet, дорогая элитная Quadrics, новенькая InfiniBand и др. Все эти технологии «заточены» под распределенные приложения и обеспечивают минимальную латентность исполнения команд и максимальную производительность. Вместо традиционной «звезды» здесь из вычислительных элементов строятся плоские и пространственные решетки, многомерные гиперкубы, поверхности трехмерного тора и другие «топологически хитрые» объекты. Такой подход позволяет одновременно передавать множество данных по сети, гарантируя отсутствие узких мест и увеличивая суммарную пропускную способность.

Как развитие идей быстрого интерконнекта отметим, например, адаптеры сети InfiniBand, подключающиеся через специальный слот HTX к процессорной шине HyperTransport. Фактически адаптер напрямую подключается к процессору[Напомним, что в многопроцессорных системах на базе AMD Opteron межпроцессорное взаимодействие происходит именно по этой шине]! Лучшие образцы подобных решений обеспечивают столь высокую производительность, что построенные на их основе кластеры вплотную приближаются по характеристикам к классическим SMP-системам, а то и превосходят их. Так, в ближайшие несколько месяцев на рынке должен появиться интереснейший чип под названием Chorus, который по четырем шинам HyperTransport подключается к четырем или двум процессорам AMD Opteron, расположенным на одной с ним материнской плате, и с помощью трех линков InfiniBand может подключаться еще к трем другим «Хорусам», контролирующим другие четверки (или пары) процессоров. Один Chorus - это одна материнская плата и один сравнительно независимый узел с несколькими процессорами, подключаемый стандартными кабелями InfiniBand к остальным узлам. Внешне вроде бы получается кластер, но - только внешне: оперативная память у всех материнских плат общая. Всего в текущем варианте может объединяться до восьми «Хорусов» (и соответственно до 32 процессоров), причем все процессоры будут работать уже не как кластер, а как единая SUMA-система, сохраняя, однако, главное достоинство кластеров - невысокую стоимость и возможность наращивания мощности. Такой вот получается «суперкластеринг», стирающий границы между кластерами и SMP.

Впрочем, все эти новомодные решения совсем не дешевы, - а ведь начинали мы с невысокой себестоимости кластера. Поэтому «Хорусы» да «Инфинибенды», стоящие солидных денег (несколько тысяч долларов на каждый узел кластера, что хоть и гораздо меньше, чем у аналогичных SMP-систем, но все равно дорого), встречаются нечасто. В секторе «академических» суперкомпьютеров, принадлежащих университетам, обычно используются самые дешевые решения, так называемые Beowulf-кластеры, состоящие из набора персоналок, соединенных гигабитной или даже стомегабитной Ethеrnet-сетью и работающих под управлением бесплатных операционных систем типа Linux. Несмотря на то что собираются такие системы буквально «на коленке», иногда из них все равно вырастают сенсации: к примеру, «биг-мак» - собранный из 1100 обычных «макинтошей» самодельный кластер, обошедшийся организаторам всего в 5,2 млн. долларов и умудрившийся занять в 2003 году третье место в рейтинге Top 500.

GRID-сети

Можно ли «продолжить» кластеры в сторону меньшей связанности точно так же, как, «продолжив» их в другом направлении, мы пришли к чипу Chorus и «почти SMP»? Можно! При этом мы отказываемся от построения специальной кластерной сети, а пытаемся использовать уже имеющиеся ресурсы - локальные сети и образующие их компьютеры. Общее название подобного рода решений - GRID-технологии, или технологии распределенных вычислений (вы наверняка с ними хорошо знакомы по таким проектам, как Distributed.Net или SETI@Home; машины добровольцев, участвующих в этих проектах, загружены разнообразными расчетами, ведущимися в то время, когда ПК хозяину не нужен). Ограничиваться достигнутым создатели GRID-систем не собираются и ставят перед собой амбициозную цель - сделать вычислительные мощности таким же доступным ресурсом, как электричество или газ в квартире. В идеале все компьютеры, подключенные к Интернету в рамках GRID, должны быть объединены в некое подобие кластера, и в то время, когда ваша машина простаивает, ее ресурсы будут доступны другим пользователям, а когда у вас возникает необходимость в больших мощностях, вам помогают «чужие» свободные компьютеры, которых в Сети предостаточно (кто-то отошел попить кофе, кто-то занимается серфингом или другими не загружающими процессор делами). Приоритетный доступ к ресурсам GRID будут иметь ученые, которые получат в распоряжение в буквальном смысле всемирный суперкомпьютер; но и обычные пользователи тоже внакладе не останутся.

Впрочем, если на словах все выглядит так замечательно, то почему это светлое будущее до сих пор не настало? Все дело в том, что при создании GRID возникают нетривиальные проблемы, решать которые пока никто толком не научился. В отличие от простого кластера при создании подобной системы приходится учитывать такие факторы, как неоднородность вычислительных узлов, низкая пропускная способность и нестабильность каналов, куда большее количество одновременно выполняемых задач, непредсказуемое поведение элементов системы, ну и, конечно, недоброжелательность некоторых пользователей. Судите сами: неоднородность нашей сети (причем очень сильная) возникает оттого, что к Интернету подключены самые разные компьютеры; у них разные возможности, разные линии связи и разные хозяева (режим работы у каждого свой). К примеру, где-то в школе есть гигабитная сеть из трех десятков почти всегда доступных, но не очень быстрых компьютеров, выключающихся на ночь в строго определенное время; а где-то стоит одинокий компьютер с завидной производительностью, непредсказуемо подключаемый к Сети по слабенькому дайлапу: так вот, в первом случае будут очень хорошо выполняться одни задачи, а во втором - совершенно другие. И для обеспечения высокой производительности системы в целом все это надо как-то анализировать и прогнозировать, чтобы оптимальным образом спланировать выполнение различных операций.


Перейти на страницу:
Изменить размер шрифта: