(3): «Р» — истинно, если и только если Р,

где «Р» обозначает некоторое предложение, для которого строится данная дефиниция. Специальное внимание следовало бы уделить тем ситуациям, когда предложение, которое нужно поставить на место «Р», содержит слово «истинное» в качестве синтаксической части. Соответствующий эквивалент (3) не может тогда рассматриваться как частная дефиниция истины, поскольку если её трактовать как дефиницию, то она явно будет содержать порочный круг. Но даже и в этом случае формулировка (3) является осмысленной. Вообразим, например, что, просмотрев какую-то книгу, мы находим следующую фразу:

(4) Не каждое предложение в этой книге является истинным.

Применяя к формулировке (4) аристотелев критерий, мы видим, что предложение (4) является истинным, если на самом деле не каждое предложение рассматриваемой книги является истинным, и оно является ложным в противном случае. Иными словами, мы можем утверждать, что получим эквивалент предложения (3), заменив в нем «Р» на предложение (4). Разумеется, этот эквивалент имеет место только при таких условиях, когда предложение (4) является либо истинным, либо неистинным, но само по себе не позволяет нам решить, что же имеет место на самом деле. Для того, чтобы проверить утверждение, выраженное в предложении (4), нужно внимательно прочесть всю книгу и проанализировать истинность предложений, содержащихся в ней.

В свете предшествующего рассуждения теперь можно переформулировать нашу главную проблему. Мы ставим условием, что использование термина «истинное» по отношению к предложениям русского языка тогда и только тогда согласуется с классической концепцией истины, когда относительно любого предложения русского языка имеет место эквивалентность вида (3). Если это условие выполняется, можно сказать, что употребление термина «истинное» материально адекватно или просто адекватно. Таким образом, наша главная проблема состоит в следующем: можем ли мы установить, адекватно ли применение термина «истинное» для предложений русского языка и если да, то какими методами? Аналогичный вопрос, конечно, можно поставить и для любого другого языка. Проблема будет полностью решена, если мы сумеем построить общую дефиницию истины, которая будет не только формально корректна, но и материально адекватна.

При некоторых специальных предположениях построение общей дефиниция истины не представляет особого труда. В самом деле, предположим, что нас интересует не весь русский язык в целом, а только какой-то из его фрагментов и что мы хотим определить термин «истинное» исключительно по отношению к предложениям этого фрагмента языка. Обозначим этот фрагмент через M. Будем считать, что M имеет точные синтаксические правила, которые позволяют нам в каждом частном случае отличать предложения от выражений, которые предложениями не являются, и что число всех предложений в M конечно (хотя, возможно, и очень велико). Заготовим полный список всех предложений в M, предположив, например, что в языке M существует ровно 1000 высказываний, и договоримся употреблять символы "S1", "Ѕ2", ..., "Ѕ1000" как сокращённые обозначения предложений данного списка. Далее, для каждого из предложений "S1", "Ѕ2", ..., "Ѕ1000" построим частные дефиниции истины, подставляя последовательно эти высказывания вместо «Р» в обеих сторонах схемы (3). Наконец, составим логическую конъюнкцию всех этих частных дефиниций, то есть соединим их в одно утверждение с помощью соединительного союза «и». Единственная вещь, которую остается сделать, ― это придать результирующей конъюнкции иную, но логически эквивалентную форму, такую, чтобы она удовлетворяла формальным требованиям, накладываемым на дефиниции правилами логики:

(5) Для каждого высказывания X (в языке M) X является истинным, если и только если

либо S1 и Х идентично с "S1",

либо S2 и Х идентично с "S2",

….............................................

….............................................

либо, наконец, S1000 и X идентично с "S1000".

Таким образом, мы получили утверждение, которое может рассматриваться как искомая общая дефиниция истины для языка M; она формально корректна и материально адекватна в том смысле, что из неё в качестве следствий могут быть получены частные определения истинности для любого предложения языка M. Между прочим, отметим, что схема (5) является предложением русского языка, но, очевидно, не предложением языка M, поскольку схема (5) содержит все предложения языка как собственные части, но не совпадает с каким-либо из них. Дальнейшее обсуждение будет способствовать более глубокому пониманию этого важного обстоятельства.

По очевидным причинам очерченная выше процедура не может быть проделана в отношении русского языка в целом. Пытаясь составить полный список предложений русского языка, мы с самого начала сталкиваемся с той трудностью, что правила русской грамматики (как и любого другого разговорного языка) не определяют точно форму выражений (ряды слов), которые следовало бы рассматривать как предложения; некоторое выражение, например, какое-нибудь восклицание, может функционировать как предложение в одном случае и не выполнять этой функции в другом. Более того, множество всех предложений русского языка бесконечно, по крайней мере потенциально. Несмотря на то, что утверждение о конечном числе всех предложений, сформулированных до настоящего момента людьми письменно и устно, является истинным, вероятно, никто не согласился бы с тем, что этот список исчерпывает все предложения русского языка. Напротив, представляется весьма вероятным, что, просматривая такой список, каждый из нас легко смог бы произнести такое предложение на русском языке, которого нет в этом списке.

Из этих замечаний не следует, конечно, что искомая дефиниция истины для произвольных предложений русского языка не может быть получена каким-то другим способом, использующим иные идеи. Существует, однако, причина более серьезная и фундаментальная, которая, по-видимому, ставит под сомнение такую возможность. Простейший аргумент в пользу такого предположения связан с антиномией лжеца. Антиномия лжеца имеет древнее происхождение. Её обычно приписывают знаменитому греческому логику Эвбулиду. Она мучила многих логиков античности и послужила причиной преждевременной смерти по крайней мере одного из них, а именно Филета из Кос.[5] В древности, в средние века и в новое время было обнаружено много других антиномий. В то время как многие из них сейчас, по существу, забыты, антиномия лжеца все еще анализируется и обсуждается в современных работах.[6] Вместе с некоторыми современными антиномиями, открытыми на рубеже столетия (в частности с антиномией Рассела), она оказывает существенное влияние на развитие современной логики.

В литературе по этому предмету можно обнаружить два диаметрально противоположных подхода к антиномиям. Один подход к ним является пренебрежительным, когда их трактуют как софистические выдумки, созданные преимущественно pour epater le bourgeois (для ошеломления обывателей), как несерьезные и скорее злобные шутки, которые в лучшем случае доказывают лишь остроумие их авторов. Противоположный подход, характерный для некоторых мыслителей девятнадцатого столетия и в меньшей степени для мыслителей текущего столетия, зиждется на убеждений, что антиномии составляют весьма существенный элемент человеческого мышления, что они должны вновь и вновь возникать в интеллектуальной деятельности и их наличие есть основной источник действительного прогресса. Как это часто случается, истина, вероятно, находится где-то посередине. Лично я как логик не смог бы примириться с тем мнением, что антиномии составляют перманентный элемент нашей системы знания. Однако я ни в малейшей степени не склонен трактовать антиномии пренебрежительно. Появление антиномий является для меня симптомом болезни. Любая антиномия, начиная с предпосылок, кажущихся интуитивно очевидными, при использовании форм рассуждения, которые кажутся интуитивно несомненными, приводит нас к бессмыслице, к противоречию. Всякий раз, когда это случается, мы должны подвергнуть наши способы мышления основательной ревизии, отвергнуть какие-то посылки, в которые верили, и усовершенствовать способы аргументации, которыми пользовались. Мы делаем это, стремясь не только избавиться от антиномий, но и не допустить появления новых. С этой целью мы проверяем нашу реформированную систему мышления всеми имеющимися в нашем распоряжении средствами и прежде всего пытаемся воссоздать старую антиномию в новой обстановке (надеясь, конечно, что эта попытка потерпит неудачу). Такая проверка — очень важная область мыслительной деятельности, родственная проведению решающих экспериментов в эмпирической науке.

вернуться

5

См. B. Mates. Stoic Logic. Berkeley and Los-Angeles, 1953, в частности, стр. 42, 84.

вернуться

6

Исчерпывающее её обсуждение можно найти в обширном труде: Rivetti Barbo. L’antinomia del mentitore nel pensiero contemperanto. Da Peirce a Tarski. Milan, 1961.


Перейти на страницу:
Изменить размер шрифта: