Готовый заряд имеет вид твердой резины или пластика. После охлаждения его подвергают тщательному контролю на сплошность и однородность массы, прочное сцепление топлива с корпусом и т. д. Трещины и поры в заряде, как и отслоения его от корпуса в отдельных местах, недопустимы, так как могут привести к нерасчетному увеличению тяги РДТТ с соответствующим уменьшением времени работы (вследствие увеличения горящей поверхности), прогарам корпуса и даже взрывам. Для проверки качества снаряженного таким образом корпуса используются рентгеновские, ультразвуковые и другие неразрушающие методы дефектоскопии.

Космические твердотопливные двигатели img_3.png

Рис. 3. Схема крепления топливного заряда к корпусу РДТТ:

1 — корпус; 2, 4 — адгезионный состав; 3 — теплоизоляционный слой; 5 — топливный заряд

Топливный заряд, изготовленный способом заливки смеси в корпус, является, по существу, неотъемлемой частью силовой конструкции РДТТ, Он должен быть достаточно прочным и в то же время эластичным, чтобы противостоять статическим, динамическим и тепловым нагрузкам, которые возникают в процессе изготовления, транспортировки и хранения РДТТ и, наконец, во время полета.

Расчет заряда на прочность является сложной процедурой, выполняемой при помощи ЭВМ. В частности, возникаемые трудности объясняются тем, что возможные деформации заряда зависят от характера приложения нагрузки, поскольку смесевое топливо, подобно другим полимерам, относится к вязко-упругим материалам. В общем случае оно характеризуется малым модулем упругости, большим относительным удлинением, достаточно высокой прочностью на разрыв и выраженным пределом текучести. Смесевое топливо теряет твердость и прочность с повышением температуры, становится жестким и хрупким (переходит в стеклообразное состояние) при низких температурах. Структурные нарушения в заряде под воздействием нагрузок (в том числе циклических) «аккумулируются» и развиваются в конечном счете в трещины на свободной поверхности заряда или приводят к отслоению заряда от корпуса. Смесевое топливо является достаточно пластичным при медленном приложении нагрузки, но хрупким при быстром, ударном приложении. Последний случай соответствует, например, моменту запуска РДТТ, когда давление в нем резко возрастает.

В дополнение ко всем этим особенностям топлива при прочностном расчете РДТТ необходимо также учитывать существенное различие в характеристиках (коэффициенте термического расширения и т. д.) для топлива, материала корпуса и находящихся между ними материалов. Обеспечение целостности соединения топливного заряда с теплоизоляционным слоем является важным условием для создания надежно работающего РДТТ. Прочность указанного соединения, как и самого заряда, определяется в конечном счете прочностью входящего в состав топлива материала горючего-связующего.

При проектировании РДТТ, разработке технологического процесса его изготовления и дальнейшей эксплуатации в составе РН и КА необходимо учитывать то обстоятельство, что твердые топлива, а также бронирующие, теплоизоляционные, адгезионные и другие полимерные материалы подвержены «старению», т. е. необратимому изменению свойств вследствие происходящих в полимерах химических и физических процессов. Поэтому при длительном хранении снаряженных РДТТ могут ухудшаться энергетические и внутрибаллистические параметры заряда, повышаться чувствительность топлива к внешним воздействиям, снижаться прочность различных структурных элементов и происходить другие нежелательные изменения. Указанное обстоятельство заставляет разработчиков РДТТ и ракетных топлив самым тщательным образом подбирать компоненты полимерных материалов, обращая внимание не только на их стабильность в отдельности, но и. на взаимную совместимость. Хранение РДТТ производится с соблюдением надлежащих условий и правил обращения. Обычно гарантийный срок хранения определяется снижением прочностных характеристик топливного заряда и соседнего с ним адгезионного слоя.

Реактивные сопла. После того как мы обсудили основные вопросы, связанные с топливным зарядом, перейдем к реактивному соплу РДТТ. В течение всего времени работы двигателя на сопло воздействует поток газов с начальными температурой до 3500 К и давлением до 7 МПа и более, движущийся со скоростью, которая достигает 3 км/с (на выходе из сопла). Если камеру ЖРД охлаждать при помощи жидких топливных компонентов, то при создании РДТТ можно рассчитывать лишь на применение жаростойких, теплоизоляционных и других специальных материалов.

Типичная конструкция сопла современного космического РДТТ представлена на рис. 4. Из него видно, что стенка сопла состоит из нескольких слоев различных материалов. Каждый из них выполняет вполне определенную функцию. Наружная оболочка (рубашка) сопла является его основным силовым элементом. Она изготавливается из высокопрочных сталей, титановых и алюминиевых сплавов, а также армированных пластиков. От теплового и эрозионного воздействия газового потока рубашку защищает внутренняя оболочка, непосредственно соприкасающаяся с горящим газом. Особо интенсивному тепловому и эрозионному воздействию подвергается горловина сопла, что могут выдержать лишь немногие материалы.

При тех высоких температурах, которые достигаются в РДТТ, наилучшими характеристиками обладает графит, в особенности пиролитический. Последний не только хорошо противостоит эрозии, но имеет и те достоинства, что хорошо проводит тепло вдоль поверхности кристаллизации и обладает теплоизолирующими свойствами в перпендикулярном этому направлении, а также отличается низким коэффициентом термического расширения. Различные виды графита используются для изготовления кольцевых вставок или тонких защитных пластин (пирографит), которые и устанавливаются в горловинах сопел. Такие конструктивные элементы характерны, однако, в основном для небольших РДТТ, так как существует опасность растрескивания крупных графитовых деталей при запуске двигателя — из-за теплового удара. Широкому применению пирографита в значительной степени препятствует его высокая стоимость.

Космические твердотопливные двигатели img_4.png

Рис. 4. Сопло РДТТ:

1 — наружная оболочка; 2 — внутренняя оболочка; 3 — теплоизоляционная оболочка

Чаще всего внутренние детали сопел космических РДТТ изготавливаются из термостойких пластиков, в которых графитовые, угольные, кремнеземные, кварцевые либо асбестовые волокна связаны в одно целое при помощи феноло-формальдегидных смол (таким образом, указанные волокна являются армирующими наполнителями, а смолы — связующими). При работе РДТТ поверхностный слой этих материалов, соприкасающийся с горячим газом, подвергается абляции, т. е. оплавлению, испарению, разложению и химической эрозии с последующим уносом массы газовым потоком.

Из перечисленных выше абляционных материалов наиболее стойкими к эрозии являются угле- и графитопластики, которые и применяются в горловинах сопел. На остальных же участках стараются использовать другие пластики, менее стойкие, но зато более дешевые. Между внутренней аблирующей оболочкой и внешней силовой рубашкой сопла обычно предусматривается слой теплоизоляции из асбо- или кремнепластиков, которые характеризуются низкой теплопроводностью и служат дополнительной защитой рубашки от нагрева.

Процесс изготовления пластиковых деталей сопла обычно включает намотку ленты из соответствующего материала на профилированную оправку, последующее отверждение изделия при давлении до 7 МПа и температуре порядка 150 °C и, наконец, механическую обработку полученной заготовки до необходимых размеров. При сборке сопла пластиковые детали устанавливаются при помощи эпоксидных клеев, последующее отверждение которых производится в нормальных окружающих условиях.

Из рассмотренного видно, что РДТТ характеризуется конструктивной простотой, В то время как ЖРД является лишь частью двигательной установки, в которую входят еще и топливные баки, питающие трубопроводы, заправочно-сливные и дренажно-предохранительные клапаны, а также ряд других элементов, сам по себе РДТТ является, по существу, двигательной установкой. Однако, как мы видели, создание этого «простого» двигателя требует чрезвычайно высокого развития теоретических знаний, химической отрасли техники, технологии производственных процессов, а также овладения многими техническими «секретами».


Перейти на страницу:
Изменить размер шрифта: