Затем отстреливался (вместе с соответствующей рамой крепления) маршевый РДТТ перевода аппарата на траекторию спуска и включалась вторая пара РДТТ (время работы 0,26 с), чтобы остановить вращение аэродинамического конуса. Сопла РДТТ этой пары направлены в противоположную сторону по сравнению с соплами РДТТ первой пары.

После аэродинамического торможения аппарата включался РДТТ для сброса крышки парашютной системы и ввода вытяжного парашюта (тяга 6,5 кН). Время работы РДТТ 0,24 с. Одновременно отстреливался аэродинамический тормозной конус и вытяжной парашют вытаскивал основной. Последний вытягивал из парашютного контейнера РДТТ увода парашютной системы, (тяга 9 кН), чтобы парашюты не накрыли спускаемый аппарат, и РДТТ мягкой посадки (тяга 56 кН).

Космические твердотопливные двигатели img_7.png

Рис. 7. Спускаемый аппарат межпланетной станции Марс-3»:

1 — аэродинамический тормозной конус; 2 — РДТТ ввода в действие вытяжного парашюта; 3 — РДТТ перевода аппарата на траекторию спуска; 4 — основной парашют; 5 — спускаемый аппарат

Затем срабатывал высотометр, установленный на спускаемом аппарате, и разделялись РДТТ увода и РДТТ мягкой посадки. Первый отбрасывал парашют в сторону (время его работы 1 с), а с помощью второго осуществлялась мягкая посадка спускаемого аппарата на поверхность Марса (время его работы 1,1 с). После окончания работы РДТТ мягкой посадки отстреливался нижний полутор парашютного контейнера и включались два боковых РДТТ (общая тяга 1 кН, время работы 4 е), установленных на корпусе РДТТ мягкой посадки. Их задача — отвести (отбросить) РДТТ мягкой посадки в сторону во избежание ударения его о корпус спускаемого аппарата.

Вспомогательные РДТТ применялись и на КА «Марс-5» и «Марс-6», «Рейнджер» (см. рис. 12 на стр. 51) и т. д.

Вспомогательные РДТТ ракет-носителей. РДТТ нашли применение в качестве газогенераторов на головных обтекателях РН, для управления их полета, для систем ориентации РН (например, в РН «Тор—Эйбл»), в системах разделения ступеней РН (например, в РН «Титан-3Си», «Сатурн», МТКК «Спейс Шаттл») и т. д.

«Сатурн-5». Эта РН с маршевыми ЖРД на всех трех последовательно расположенных ступенях содержит в Общей сложности 18 вспомогательных РДТТ, установленных на периферии корпуса. Причем в хвостовой части первой ступени расположены 8 тормозных РДТТ (развивавших тягу по 337 кН каждый за время работы 0,54 с) для отделения данной ступени. В переходном отсеке под второй ступенью расположены 4 РДТТ (развивавших тягу по 102 кН каждый и работавших в течение 3,8 с) для «осадки» топлива в баках. И наконец, внизу в третьей ступени расположены два РДТТ (развивавших тягу по 15 кН каждый при времени работы 3,9 с) для «осадки» топлива и еще четыре РДТТ (с тягой по 155 кН каждый при времени работы 1,5 с) для отделения второй ступени.

Последовательность функционирования перечисленных РДТТ заключалась в следующем. Через 0,5–0,7 с после команды на выключение маршевых ЖРД отработавшей ступени включаются РДТТ, обеспечивающие «осадку» топлива в баках последующей ступени. Спустя еще 0,1–0,2 с включаются тормозные РДТТ, отделяющие отработавшую ступень. В этот момент тяга ее маршевых двигателей еще составляет 10 % номинального значения. Тормозные РДТТ продолжают работать, а последующая ступень в течение 0,1–0,6 с совершает полет по инерции и под действием тяги РДТТ «осадки» топлива (например, через 1 с после момента разделения первой и второй ступеней расстояние между ними достигает 2 м). Затем подается команда на включение маршевых ЖРД. Через 3–6 с они выходят на номинальный рабочий режим, и действие РДТТ «осадки» топлива прекращается, а вскоре эти РДТТ сбрасываются, чтобы уменьшить «пассивную» массу ступени. Операции сброса осуществляются при помощи пиротехнических систем и пружинных толкателей.

Вспомогательные РДТТ ракеты-носителя «Сатурн-5» одинаковы по своей конструкции. В их стальных цилиндрических корпусах содержатся заряды с внутренними звездообразными каналами, изготовленные из смесевого топлива на основе перхлората аммония и полисульфидного каучука. Наиболее крупными являются тормозные РДТТ первой ступени; их высота 2,24 м, диаметр 0,39 м, масса 228 кг (в том числе 126 кг топлива). Наименьшие РДТТ, обеспечивающие «осадку» топлива в баках третьей ступени, содержат по 27 кг топлива.

«Титан-ЗСи», «Спейс Шаттл». На каждом из двух твердотопливных «навесных» их двигателей (о которых будет рассказано далее) имеется восемь РДТТ отделения, сгруппированных в два блока. РДТТ «Титан-ЗСи» показаны на последней странице обложки в момент их включения. Далее мы рассмотрим РДТТ аппарата «Спейс Шаттл», которые отличаются от двигателей РН «Титан-ЗСи» лучшими характеристиками. Они развивают тягу по 95 кН и работают 0,7 с (а с учетом процессов нарастания и спада тяги — 1,2 с). Суммарный импульс тяги каждого двигателя 82 кН с. Топливный заряд массой 35 кг с внутренним каналом в виде шестнадцатиконечной звезды (обеспечивающим большую поверхность горения) размещен в цилиндрическом корпусе диаметром 32,6 см. Общая длина двигателя 88 см при массе 74 кг.

При сгорании топлива в камере РДТТ образуются газы с высоким давлением (около 13 МПа), что позволяет достаточно эффективно использовать потенциальную химическую энергию топлива. Корпус РДТТ и деталь крепления сопла изготовлены из алюминиевого сплава, выходная часть сопла — стальная, неохлаждаемая, горловина сопла — графитовая.

При проектировании РДТТ отделения «Спейс Шаттл» обращалось особое внимание на то, чтобы реактивные струи газов, истекающих из РДТТ, не повредили теплозащитное покрытие этого аппарата во время полета. Поэтому необходимо было исключить возможность попадания в газовые струи каких-либо посторонних твердых частиц (частей воспламенителя и теплозащитных покрытий и т. д.). Даже состав топлива РДТТ был выбран таким, чтобы содержание этих частиц в продуктах сгорания было небольшим: в смесевом топливе всего 2 % алюминия (остальное — перхлорат аммония и полибутадиен с гидроксильными концевыми группами).

МАРШЕВЫЕ КОСМИЧЕСКИЕ РДТТ

Далее на примере конкретных образцов двигателей ракет-носителей и космических аппаратов поясняются, те области применения космических маршевых РДТТ, которые перечислены в начале брошюры. Рассматриваемые образцы дают представление о современном состоянии развития космических РДТТ в отдельных странах и во всем мире, о возможных технических решениях, о разнообразии реализованных конструкций, о некоторых проблемах создания и использования космических РДТТ, о значении этих двигателей. Начнем рассказ с одной из последних разработок.

Двигатель SRM. Его полное название в переводе о английского означает «Твердотопливный ракетный двигатель». SRM является крупнейшим среди современных РДТТ, Он характеризуется следующими данными: высота 38,2 м, диаметр корпуса 3,71 м, масса 568 т. Работая в течение 122 с, двигатель развивает полный импульс тяги почти 1300 МН с при максимальной тяге ~ 14 МН.

Космические твердотопливные двигатели img_8.png
Космические твердотопливные двигатели img_9.png

Рис. 8. Двигатель SRM

В SRM используется смесевое топливо, состав и. характеристики которого приведены на стр. 13. Двигатель имеет ту особенность, что масса его топливного заряда, составляющая 502 т (т. е. 88,4 % от общей массы), распределена почти поровну между четырьмя секциями (рис. 8), которые изготавливаются отдельно и соединяются затем в одно целое при помощи механических замков с устанавливаемыми вручную штифтами-фиксаторами. Такая секционная (сегментная) конструкция разрешает проблемы, связанные с изготовлением и транспортировкой столь крупного РДТТ. Его можно перевезти в разобранном виде с завода-изготовителя прямо на космодром и собрать там в течение одних суток.


Перейти на страницу:
Изменить размер шрифта: