Невозможность образования при течении с u < uc новых квазичастиц в Не II приводит к своеобразной двухжидкостной гидродинамике. Совокупность имеющихся в Не II квазичастиц рассеивается и тормозится стенками сосуда, она составляет как бы нормальную вязкую часть жидкости, в то время как остальная жидкость является сверхтекучей. Для сверхтекучей жидкости характерно появление в некоторых условиях (например, при вращении сосуда) вихрей с квантованной циркуляцией скорости сверхтекучей компоненты. В Не II возможно распространение двух типов звука, из которых 1-й звук соответствует обычным адиабатическим колебаниям плотности, в то время как 2-й звук соответствует колебаниям плотности квазичастиц и, следовательно, температуры (см. Второй звук)

  Наличие газа квазичастиц одинаково характерно как для бозе-, так и для ферми-жидкости. В ферми-жидкости часть квазичастиц имеет полуцелый спин и подчиняется статистике Ферми — Дирака, это так назывемые одночастичные возбуждения. Наряду с ними в ферми-жидкости существуют квазичастицы с целочисленным спином, подчиняющиеся статистике Бозе — Эйнштейна, из них наиболее интересен «нуль-звук», предсказанный теоретически и открытый в жидком 3He (см. Нулевой звук). Ферми-жидкости делятся на нормальные и сверхтекучие в зависимости от свойств спектра квазичастиц.

  К нормальным ферми-жидкостям относятся жидкий 3He и электроны в несверхпроводящих металлах, в которых энергия одночастичных возбуждений может быть сколь угодно малой при конечном значении импульса, что приводит к uc = 0. Теория нормальных ферми-жидкостей была развита Л. Д. Ландау (1956—58).

  Единственной, но очень важной сверхтекучей ферми-жидкостью являются электроны в сверхпроводящих металлах (см. Сверхпроводимость). Теория сверхтекучей ферми-жидкости была развита Дж. Бардином, Л. Купером и Дж. Шриффером (1957) и Н. Н. Боголюбовым (1957). Между электронами в сверхпроводниках, согласно этой теории, преобладает притяжение, что приводит к образованию из электронов с противоположными, но равными по абсолютной величине импульсами связанных пар с суммарным моментом, равным нулю (см. Купера эффект). Для возникновения любого одночастичного возбуждения — разрыва связанной пары — необходимо затратить конечную энергию. Это приводит, в отличие от нормальных ферми-жидкостей, к uc ¹ 0, т. е. к сверхтекучести электронной жидкости (сверхпроводимости металла). Существует глубокая аналогия между сверхпроводимостью и сверхтекучестью. Как и в 4He, в сверхпроводящих металлах имеется фазовый переход II рода, связанный с появлением бозе-конденсата пар электронов. При определённых условиях в магнитном поле в так называемых сверхпроводниках II рода появляются вихри с квантованным магнитным потоком, являющиеся аналогом вихрей в Не II.

  Кроме перечисленных выше К. ж., к ним относятся смеси 3He и 4He, которые при постепенном изменении соотношения компонентов образуют непрерывный переход от ферми- к бозе-жидкости. Согласно теоретическим представлениям, при чрезвычайно высоких давлениях и достаточно низких температурах все вещества должны переходить в состояние К. ж., что возможно, например, в некоторых звёздах.

  Лит.: Ландау Л. Д. и Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964; Абрикосов А. А., Халатников И. М., Теория ферми-жидкости, «Успехи физических наук», 1958, т. 66, в. 2, с. 177; Физика низких температур, пер. с англ., М., 1959; Пайнс Д., Нозьер Ф., Теория квантовых жидкостей, пер. с англ., М., 1967.

  С. В. Иорданский.

Квантовая механика

Ква'нтовая меха'ника волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

  Законы К. м. составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.

  Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах К. м. Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Т. о., К. м. становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

  Место квантовой механики среди других наук о движении. В начале 20 в. выяснилось, что классическая механика И. Ньютона имеет ограниченную область применимости и нуждается в обобщении. Во-первых, она не применима при больших скоростях движения тел — скоростях, сравнимых со скоростью света. Здесь её заменила релятивистская механика, построенная на основе специальной теории относительности А. Эйнштейна (см. Относительности теория). Релятивистская механика включает в себя Ньютонову (нерелятивистскую) механику как частный случай. Ниже термин «классическая механика» будет объединять Ньютонову и релятивистскую механику.

  Для классической механики в целом характерно описание частиц путём задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Такому описанию соответствует движение частиц по вполне определенным траекториям. Однако опыт показал, что это описание не всегда справедливо, особенно для частиц с очень малой массой (микрочастиц). В этом состоит второе ограничение применимости механики Ньютона. Более общее описание движения дает К. М., которая включает в себя как частный случай классическую механику. К. м., как и классическая, делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности. В статье изложены основы нерелятивистской К. м. (Однако некоторые общие положения относятся к К. м. в целом. Нерелятивистская К. м. (как и механика Ньютона для своей области применимости) — вполне законченная и логически непротиворечивая теория, способная в области своей компетентности количественно решать в принципе любую физическую задачу. Релятивистская К. м. не является в такой степени завершенной и свободной от противоречий теорией. Если в нерелятивистской области можно считать, что движение определяется силами, действующими (мгновенно) на расстоянии, то в релятивистской области это несправедливо. Поскольку, согласно теории относительности, взаимодействие передается (распространяется) с конечной скоростью, должен существовать физический агент, переносящий взаимодействие; таким агентом является поле. Трудности релятивистской теории — это трудности теории поля, с которыми встречается как релятивистская классическая механика, так и релятивистская К. м. В этой статье не будут рассматриваться вопросы релятивистской К. м., связанные с квантовой теорией поля.


Перейти на страницу:
Изменить размер шрифта: