В 1913 Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе классических представлений приводило к парадоксальному результату — невозможности стабильного существования атомов: согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию; радиус его орбиты должен уменьшаться, и за время порядка 10–8 сек электрон должен упасть на ядро. Это означало, что законы классической физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.
Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определённым условиям квантования. Т. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии. Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классической орбиты была целым кратным постоянной Планка
. Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии Ei, на другой с меньшей энергией Ek, при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход:hn = Ei - Ek. (2)
Так возникает линейчатый спектр — основная особенность атомных спектров, Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул (см. Спектральные серии).
Существование уровней энергии в атомах было непосредственно подтверждено Франка — Герца опытами (1913—14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетических уровней атома.
Т. о., Н. Бор, используя квантовую постоянную h, отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля.
Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой — привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение молекулярной связи и т.д. «Полуклассическая» теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой. Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно. Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома. В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины — матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).
Большую роль в создании К. м. сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование К. м. как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано неопределённостей соотношение — важнейшее соотношение, освещающее физический смысл уравнений К. м., её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты К. м. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.
Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) — спин. Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета (Паули принцип, см. ниже), имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.
В течение короткого времени К. м. была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными. Дальнейшее принципиальное развитие квантовой теории связано главным образом с релятивистской К. м. Нерелятивистская К. м. развивалась в основном в направлении охвата разнообразных конкретных задач физики атомов, молекул, твёрдых тел (металлов, полупроводников), плазмы и т.д., а также совершенствования математического аппарата и разработки количественных методов решения различных задач.
Вероятности и волны. Поскольку законы К. м. не обладают той степенью наглядности, которая свойственна законам классической механики, целесообразно проследить линию развития идей, составляющих фундамент К. м., и только после этого сформулировать её основные положения. Выбор фактов, на основе которых строится теория, конечно, не единствен поскольку К. м. описывает широчайший круг явлений и каждое из них способно дать материал для её обоснования. Будем исходить из требований простоты и возможной близости к истории.
Рассмотрим простейший опыт по распространению света (рис. 1). На пути пучка света ставится прозрачная пластинка S. Часть света проходит через пластинку, а часть отражается. Известно, что свет состоит из «частиц» — фотонов. Что же происходит с отдельным фотоном при попадании на пластинку? Если поставить опыт (например, с пучком света крайне малой интенсивности), в котором можно следить за судьбой каждого фотона, то можно убедиться, что фотон при встрече с пластинкой не расщепляется на два фотона, его индивидуальность как частицы сохраняется (иначе свет менял бы свою частоту, т. е. «цветность»). Оказывается, что некоторые фотоны проходят сквозь пластинку, а некоторые отражаются от нее. В чем причина этого? Может быть, имеется два разных сорта фотонов? Поставим контрольный опыт: внесем такую же пластинку на пути прошедшего света, который должен бы содержать только один из двух «сортов» фотонов. Однако будет наблюдаться та же картина: часть фотонов пройдет вторую пластинку, а часть отразится. Следовательно, одинаковые частицы в одинаковых условиях могут вести себя по-разному. А это означает, что поведение фотона при встрече с пластинкой непредсказуемо однозначно. Детерминизма в том смысле, как это понимается в классической механике, при движении фотонов не существует. Этот вывод является одним из отправных пунктов для устранения противоречия между корпускулярными и волновыми свойствами частиц и построения теории квантовомеханических явлений.