Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.
Кроме количественных и полуколичественных расчётов, современная К. х. включает ещё большую группу результатов качественного рассмотрения. Зачастую удаётся получать весьма убедительную информацию о строении и свойствах молекул без всяких громоздких расчётов, используя различные фундаментальные концепции, основанные главным образом на рассмотрении симметрии.
Соображения симметрии играют важную роль в К. х., так как позволяют контролировать физический смысл результатов приближённого рассмотрения многоэлектронных систем. Например, исходя из точечной группы симметрии молекулы, можно вполне однозначно решить вопрос об орбитальном вырождении электронных уровней независимо от выбора расчётного приближения. Знание степени орбитального вырождения часто уже достаточно для суждения о многих важных свойствах молекулы, таких как потенциалы ионизации, магнетизм, конфигурационная устойчивость и ряд других. Принцип сохранения орбитальной симметрии лежит в основе современного подхода к механизмам протекания согласованных химических реакций (правила Вудворда — Гофмана). Указанный принцип может быть, в конечном счёте, выведен из общего топологического рассмотрения областей связывания и антисвязывания в молекуле.
Следует иметь в виду, что современная химия имеет дело с миллионами соединений и её научный фундамент не является монолитным. В одних случаях успех достигается уже при использовании чисто качественных представлений К. х., в других — весь её арсенал оказывается недостаточным. Поэтому, оценивая современное состояние К. х., всегда можно привести много примеров, свидетельствующих как о силе, так и о слабости современной квантовохимической теории. Ясно лишь одно: если раньше уровень квантовохимических работ ещё мог определяться технической сложностью применённого расчётного аппарата, то теперь доступность ЭВМ выдвигает на первый план физико-химическую содержательность исследований. С точки зрения внутренних интересов К. х. наибольшую ценность, вероятно, представляют попытки выйти за пределы одноэлектронного приближения. В то же время для утилитарных целей в различных областях химии одноэлектронное приближение таит ещё много неиспользованных возможностей. См. также Химическая связь, Валентность.
Лит. см. при ст. Валентность и Химическая связь.
Е. М. Шусторович.
Квантовая эволюция
Ква'нтовая эволю'ция, форма эволюции группы организмов, связанная с резким переходом её из одной адаптивной зоны в другую. Термин «К. э.» введён американским биологом Дж. Г. Симпсоном (1944). В этом смысле «квант» — воздействие, которое, будучи ниже какого-то порога, не даёт реакции, а, превысив этот порог, выводит группу из состояния равновесия и в результате действия жёсткого естественного отбора приводит её либо к гибели, либо к резким изменениям в строении организмов и к появлению новых семейств, подотрядов, отрядов и т.д. К. э. объясняет взрывной характер эволюции многих крупных групп организмов, неожиданно достигавших бурного расцвета. Так, образование к началу третичного периода обширных равнин и появление травянистых покрытосеменных растений, особенно злаков, способствовали прогрессивному изменению строения зубной системы и черепа, а также конечностей у копытных млекопитающих, что привело к резкому увеличению их численности, разнообразию форм и повсеместному расселению.
Лит.: Симпсон Дж, Г., Темпы и формы эволюции, пер. с англ., М., 1948.
А. В. Ялоков.
Квантовая электродинамика
Ква'нтовая электродина'мика, квантовая теория электромагнитных процессов; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же К. э. лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны, фотоны обладают нулевой массой покоя, энергией E = hn и импульсом р = (h/2p) k, где h — Планка постоянная, n — частота электромагнитной волны, k — волновой вектор, ориентированный по направлению распространения волны и имеющий величину k = 2pn/c, с— скорость света. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в К. э. как поглощение и испускание частицами фотонов.
К. э. количественно объясняет эффекты взаимодействия излучения с веществом (испускание, поглощение и рассеяние), а также последовательно описывает электромагнитные взаимодействия между заряженными частицами. К числу важнейших проблем, которые не нашли объяснения в классической электродинамике, но успешно разрешаются К. э., относятся тепловое излучение тел, рассеяние рентгеновских лучей на свободных (точнее, слабо связанных) электронах (Комптона эффект), излучение и поглощение фотонов атомами и более сложными системами, испускание фотонов при рассеянии быстрых электронов во внешних полях (тормозное излучение) и т.п. К. э. с высокой степенью точности описывает эти явления, а также любые др. явления взаимодействия электромагнитного излучения с электронами и позитронами. Меньший успех теории при рассмотрении др. процессов обусловлен тем, что в этих процессах, кроме электромагнитных взаимодействий, играют определяющую роль и взаимодействия иных типов (сильные взаимодействия, слабые взаимодействия).
Последовательное построение К. э. привело к пересмотру классических представлений о законах движения материи.
Лит. см. при ст. Квантовая теория поля.
В. И. Григорьев.