т. е. полная вероятность Ak спонтанного испускания с уровня Ek равна сумме вероятностей Aki отдельных спонтанных переходов Ek ® Ei, величина Aki называется коэффициентом Эйнштейна для спонтанного испускания при таком переходе. Для атома водорода Aki ~ (107— 108) сек–1.

  Для вынужденных К. п. число переходов пропорционально плотности rn излучения частоты n = (Ek - Ei)/h, т. е. энергии фотонов частоты n, находящихся в 1 см3. Вероятности поглощения и вынужденного испускания характеризуются соответственно коэффициентами Эйнштейна Bik и Bki, равными числам фотонов, поглощаемых и соответственно вынужденно испускаемых в среднем одной частицей за 1 сек при плотности излучения, равной единице. Произведения Bikrn и Bkirn определяют вероятности вынужденного поглощения и испускания под действием внешнего электромагнитного излучения плотности rn и, так же как Aki, выражаются в сек–1.

  Коэффициенты Aki, Bik и Bki связаны между собой соотношениями (впервые полученными А. Эйнштейном и строго обоснованными в квантовой электродинамике):

gkBki = giBik,              (3)

Большая Советская Энциклопедия (КВ) i-images-125464238.png
,     (4)

где gi (gk) кратность вырождения уровня Ei (Ek), т. е. число различных состояний системы, имеющих одну и ту же энергию Ei (соответственно Ek), с — скорость света. Для переходов между невырожденными уровнями (gi = gk = 1) Bki = Bik, т. е. вероятности вынужденных К. п. — прямого и обратного — одинаковы. Если один из коэффициентов Эйнштейна известен, то по соотношениям (3) и (4) можно определить остальные.

  Вероятности излучательных переходов различны для разных К. п. и зависят от свойств уровней энергии Ei и Ek, между которыми происходит переход. Вероятности К. п. тем больше, чем сильнее изменяются при переходе электрические и магнитные свойства квантовой системы, характеризуемые её электрическими и магнитными моментами. Возможность излучательных К. п. между уровнями Ei и Ek с заданными характеристиками определяется отбора правилами. (Подробнее см. Излучение электромагнитное.)

  Безызлучательные квантовые переходы также характеризуются вероятностями соответствующих переходов Cki и Cik,средними числами процессов отдачи и получения энергии Ek — Ei в 1 сек, рассчитанными на одну частицу с энергией Ek (для процесса отдачи энергии) или энергией Ei (для процесса получения энергии). Если возможны как излучательные, так и безызлучательные К. п., то полная вероятность перехода равна сумме вероятностей переходов обоих типов. Учёт безызлучательных К. п. играет существенную роль, когда его вероятность того же порядка или больше соответствующего К. п. с излучением. Например, если с первого возбуждённого уровня E2 возможен спонтанный излучательный переход на основной уровень E1 с вероятностью A21 и безызлучательный переход на тот же уровень с вероятностью C21, то полная вероятность перехода равна A21 + C21, а время жизни на уровне равно t'2 = 1/(A21 + C21) вместо t2 = 1/ A2 при отсутствии безызлучательного перехода. Т. о., за счёт безызлучательных К. п. время жизни на уровне уменьшается. При A21 >> C21 время t'2 очень мало по сравнению с t'2, и подавляющее большинство частиц будет терять энергию возбуждения E2 - E1 при безызлучательных процессах — будет происходить тушение спонтанного испускания.

  Лит. см. при ст. Атом, Молекула, Спектры оптические.

  М. А. Ельяшевич.

Большая Советская Энциклопедия (КВ) i009-001-210202498.jpg

Часть уровней квантовой системы: Е1 — основной уровень (уровень с наименьшей возможной энергией), Е2, Е3, Е4 — возбуждённые уровни. Стрелками показаны квантовые переходы с поглощением (направление вверх) и с отдачей энергии (направление вниз).

Квантовые стандарты частоты

Ква'нтовые станда'рты частоты', устройства, в которых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые переходы частиц (атомов, молекул, ионов) из одного энергетическое состояния в другое. К. с. ч. позволяют измерять частоту колебаний, а следовательно, и их период, т. е. время, с наибольшей точностью по сравнению с др. стандартами частоты (см. Частоты стандарт, Время). Это привело к их внедрению в метрологию. К. с. ч. служат основой национальных эталонов частоты и времени и вторичных эталонов частоты, которые по классу точности и метрологическим возможностям приближаются к национальному эталону, но подлежат калибровке по нему. К. с. ч. применяются как лабораторные стандарты частоты, имеющие широкий набор выходных частот и снабженные устройством для сравнения измеряемой частоты с частотой стандарта, а также как реперы частоты, которые позволяют наблюдать выбранную спектральную линию, не внося в неё существенных искажений, и сравнивать (с высокой точностью) измеряемую частоту с частотой, фиксируемой спектральной линией. Качество К. с. ч. характеризуется их стабильностью — способностью сохранять выбранное значение частоты неизменным в течение длительного промежутка времени.

  Квантовые законы накладывают весьма жёсткие ограничения на состояние атомов. Под действием внешнего электромагнитного поля определённой частоты атомы могут либо возбуждаться, т. с. скачком переходить из состояния с меньшей энергией E1 в состояние с большей энергией E2, поглощая при этом порцию (квант) энергии электромагнитного поля, равную:

hn = E2 - E1,

либо переходить в состояние с меньшей энергией, излучая электромагнитные волны той же частоты (см. Атом, Квантовая электроника).

  К. с. ч. принято разделять на два класса. В активных К. с. ч. квантовые переходы атомов и молекул непосредственно приводят к излучению электромагнитных волн, частота которых служит стандартом или опорной частотой. Такие приборы называются также квантовыми генераторами. В пассивных К. с. ч. измеряемая частота колебаний внешнего генератора сравнивается с частотой колебаний, соответствующих определённому квантовому переходу выбранных атомов, т. е. с частотой спектральной линии. Первыми достигли технического совершенства и стали доступными пассивные К. с. ч. на пучках атомов цезия (цезиевые стандарты частоты). В 1967 международным соглашением длительность секунды определена как 9.192.631.770,0 периодов колебаний, соответствующих определённому энергетическому переходу атомов единственного стабильного изотопа цезия 133Cs. Нуль после запятой означает, что это число не подлежит дальнейшему изменению. В цезиевом стандарте частоты наблюдается контур спектральной линии 133Cs, соответствующей переходу между 2 выбранными уровнями энергии E2 и E1. Частота, соответствующая вершине этой линии, фиксируется и с ней при помощи специальных устройств сравниваются измеряемые частоты.


Перейти на страницу:
Изменить размер шрифта: