И еще одно очень интересное свойство конденсатора открылось ученым. Если помещать между его обкладками различные непроводящие материалы – диэлектрики, емкость конденсатора может резко меняться. Эту способность диэлектриков изменять емкость конденсатора назвали диэлектрической проницаемостью. Было установлено: чем больше величина диэлектрической проницаемости, тем больше при прочих равных условиях емкость конденсатора.
Диэлектрическая проницаемость равна в вакууме единице. Очень близка к этому значению диэлектрическая проницаемость воздуха, поэтому воздушные конденсаторы имеют очень малую емкость. Если идти в сторону увеличения диэлектрической проницаемости, то ее значение для парафина – 2, для фарфора и стекла – до 7, а для воды – 81. То есть водный конденсатор обладает в 81 раз большей емкостью, чем воздушный.
Однако при подсчете плотности энергии обычных конденсаторов, например электролитических, которые широко распространены в радиотехнике, выяснилось, что она очень низкая, не выше, чем у обычных стальных пружин. Даже у конденсаторов-гигантов плотность энергии не выше, хотя общее количество энергии может быть достаточно велико.
За единицу емкости конденсаторов принята фарада (Ф). Это очень крупная единица, такую емкость мог бы иметь, например шар, диаметр которого равен 18 млн км, то есть в 1500 раз больше нашей Земли! Разумеется, емкость большинства существующих конденсаторов значительно меньше, поэтому ее измеряют в миллионных долях фарады – микрофарадах (мкФ), или в единицах, еще в миллион раз меньших, – пикофарадах (пФ).
Если взвесить самый заурядный электролитический конденсатор емкостью 10 мкФ при напряжении 300 В, то масса его составит несколько десятков граммов. А энергии в этом конденсаторе будет менее 0,5 Дж. Стало быть, плотность энергии достигнет около 10 Дж/кг. Хорошие конденсаторы могут накопить энергии раз в 10 больше, но и это очень немного.
Чтобы резко повысить емкость конденсаторов, приходится прибегать ко всяким ухищрениям. И надо сказать, в последнее время ученые здесь преуспели. В Японии, например, впервые был изготовлен конденсатор из активированного угля!
Известно, что активированный уголь, приготовленный путем кипячения древесного угля в воде, имеет огромную поверхность на единицу объема. Такую поверхность образуют поры, из которых водой были вымыты соли. Благодаря этому активированный уголь отлично поглощает запахи, яды, различные газы. Им заполняют противогазы, его принимают при отравлениях, используют во многих других случаях. Именно поверхность активированного угля и заинтересовала японских ученых. Уголь пропитывают раствором солей щелочных металлов – натрия, калия, лития в органическом растворителе, и происходит чудо – емкость 1 см3такого конденсатора возрастает до десяти и более фарад! Иначе говоря, до емкости размещенного в пустоте шара, чей диаметр в 15 тыс. раз больше, чем диаметр Земли, больше, чем расстояние от Земли до Солнца! Но в отношении энергии это мало что дает – конденсатор из активированного угля выдерживает лишь очень низкое напряжение. Плотность энергии такого конденсатора составляет примерно 1 кДж/кг, что гораздо выше, чем у обычных конденсаторов, но все-таки крайне мала.
Венгерские ученые пошли по другому пути. Они создали особые пластмассы, обладающие необычайно высокой диэлектрической проницаемостью и пробойным напряжением. Кроме того, они выяснили, что самая высокая в природе диэлектрическая проницаемость – 130 тыс. единиц! – у дезоксирибонуклеиновой кислоты, той самой ДНК, которая несет генетическую информацию. Если обычный конденсатор емкостью 10 мкФ заполнить в качестве электролита ДНК, то при напряжении 300 В плотность его энергии составит 20 кДж/кг, что превышает тот же показатель для резиновых аккумуляторов.
Тут мне пришло в голову: что, если объединить открытия японских и венгерских ученых, то есть пропитать активированный уголь дезоксирибонуклеиновой кислотой. Удельная энергия конденсатора, судя по всему, вырастет еще раз в 100. Тогда масса «энергетической капсулы», необходимой автомобилю для прохождения 100 км, была бы не более 1-2 кг!
Да, заманчиво, конечно, все это осуществить, но где достать столько ДНК? Как пропитать ДНК-активированный уголь? Насколько дорог будет такой конденсатор, если его все же удастся получить? Какова будет сила взрыва, если произойдет случайный пробой?
Мне было трудно ответить на поставленные вопросы, кроме последнего. Дело в том, что однажды я чуть не стал заикой от оглушительного взрыва телевизионного конденсатора, энергия которого была в десятки тысяч раз меньше…
И еще одно обстоятельство меня огорчало. «Перестраховщики» ученые, зная почти все про конденсаторы, определили теоретический предел плотности их энергии, который оказался в тысячи раз ниже по сравнению с вычисленным мной. Кто-то из нас очень ошибался в своих расчетах, и я, кажется, догадывался, кто… По крайней мере на ближайшее будущее с помощью так называемых «ультраконденсаторов» в США планируют накапливать энергию в количестве всего около 30 кДж/кг.
Между тем современные, так называемые «молекулярные» конденсаторы, несмотря на небольшую плотность энергии, в десятки раз уступающую плотности современных электроаккумуляторов, успешно применяются для запуска двигателей внутреннего сгорания и даже для перемещения транспортных средств на небольшие расстояния. Например, для некоторых типов инвалидных колясок.
«Капсулу» – в жидкий гелий
Нет, не получилось из конденсатора полноценной «энергетической капсулы». Ну ничего, ведь электричество можно накопить не только в виде неподвижного, статического заряда, – при движении электронов по проводу обмотки электромагнита оно тоже накапливается.
Мне очень хорошо запомнился школьный опыт по физике, где мы подключали к аккумуляторной батарее лампочку параллельно с электромагнитом. Лампочка загоралась не сразу, медленно раскалялся ее волосок, но при отключении батареи лампочка, вместо того, чтобы погаснуть, вспыхивала еще ярче. Какая же энергия, если не накопленная в электромагните, раскаляла волосок лампочки тогда, когда питание от батареи уже не поступало? Похоже, эта энергия накапливалась в магнитном поле в то время, когда лампочка горела тускло. Ей явно не хватало мощности батареи – львиная доля мощности шла на насыщение энергией электромагнита.
Итак, вот он – очередной аккумулятор, может быть, даже кандидат на «энергетическую капсулу». Проверим, на что способен электромагнит как накопитель.
Я попробовал «подпитывать» электромагнит током от аккумуляторных батарей, постепенно увеличивая их число. Соответственно повышалось напряжение на клеммах электромагнита, увеличивался ток, а следовательно, росла и подъемная сила электромагнита. В его магнитном поле накапливалась все бОльшая и бОльшая энергия. Так, наверное, продолжалось бы и дальше, но… от электромагнита вдруг пошел дым – он перегрелся от чрезмерного тока. Опыт пришлось прекратить. Вот, значит, где предел энергоемкости электромагнита!
Оказалось, что и со сроком хранения энергии плоховато – держится накопленная энергия в электромагните, или, как говорят, в катушке индуктивности, доли секунды. Из-за сопротивления в проводнике – проволоке, намотанной на сердечник электромагнита, – вся накопленная в его магнитном поле энергия быстро переходит в тепло. А нельзя ли устранить это сопротивление?
Мне не хотелось идти в библиотеку, однако я пересилил себя. Зато потом в читальном зале я просидел до самого закрытия и нашел не только ответ на свой вопрос, но и множество других полезных сведений.