Между тем такой способ получения стали имел существенный недостаток: чугун затвердевал быстрее, чем происходила сварка между науглероженными кусочками железа и чугуна, поскольку между ними трудно было обеспечить хороший контакт. В результате сплошность металла после ковки могла нарушаться трещинами. Можно ли этого избежать? Да, можно, если плавить в тигле сначала один чугун, и только после его расплавления добавлять в жидкий сплав мелкие кусочки железа. В этом случае контакт достигается идеальный, и диффузия углерода из чугуна в железо будет идти гораздо быстрее. Возможно, что в древние времена в Индии и других странах Востока таким путем получали знаменитые вутцы.
В Европе значительно позднее пришли фактически к такому же способу получения стали. Так, например, Реомюр еще в 1722 году высказывал идею о возможности превращения мягкого железа в сталь путем погружения его в жидкий чугун. В это время Европа еще не знала ни тигельного процесса, ни отражательных печей. Поэтому эта идея была осуществлена на Западе только в 1840–1860 годах братьями Эмилем и Пьером Мартенами, которые путем сплавления чугуна и лома впервые получили сталь на поду большегрузной отражательной печи. Известно, что температуры, которые достигались в мартеновских печах, позволяли полностью расплавить чугун и железо и получить жидкую сталь. Поэтому Европа перешагнула «булатный период» производства стали, и булат с его высокими свойствами и неповторимыми узорами навсегда остался для нее тайной.
«Неравновесная» теория булатного узора объясняет также, почему после П. П. Аносова практически никто не мог получить лучшие сорта булата. «Сильный» жар во время плавки, им рекомендуемый, стал своего рода психологическим барьером, который не смогли перешагнуть его последователи. Все дело в том, что «сильный жар» в отражательной печи Сименса, в которой впоследствии плавили тигельную сталь, соответствовал температуре 1500–1530 °C; у Аносова же он не достигал этих температур. Таким образом, исследователи, повторявшие опыты Аносова, расплавляли шихту при таких температурах, которые не могли обеспечить неоднородность: чугун и железо полностью расплавлялись, и это приводило к получению обычной (гомогенной) углеродистой стали.
Что касается медленного охлаждения слитка, то здесь было заложено рациональное зерно. Этот фактор, с одной стороны, благоприятствовал достижению нужной неоднородности, а с другой — создавал условия для дальнейшей диффузии углерода, что, в свою очередь, способствовало формированию зоны постепенного изменения концентрации этого элемента при переходе слоев высокоуглеродистого металла в слои низкоуглеродистого. Такое строение обеспечивало уменьшение напряжений при деформации и нагреве стали и исключало появление в металле разрывов и трещин.
Кстати, теперь ясно, что сущность структуры настоящего булата и сварочного булата фактически одна и та же. И все-таки свойства литого булата со сварочным несравнимы. У литого булата они должны были быть значительно выше. Это легко объяснить прежде всего тем, что содержание углерода в литом булате (1,3–2,0 %) больше, чем в сварочном (0,6–0,8 %). Кроме того, в литом булате, как мы теперь знаем, наблюдается более постепенный переход от высокоуглеродистых слоев к низкоуглеродистым. Очевидно, чем менее резок этот переход, тем выше механические свойства булатного клинка.
Почему же А. П. Виноградов, блестяще разгадавший секрет получения литой узорчатой стали, не сумел экспериментально воспроизвести аносовские плавки и получить высокоуглеродистый булат? По всей вероятности, он не имел тигельной печи. А в другом агрегате создать условия для науглероживания железа до чугуна и остановить плавку в нужный момент не так-то просто. Для этого требуется искусство мастера. Недаром даже соратник изобретателя русского булата Н. П. Швецов не мог повторить полностью результаты Аносова.
В свете «неравновесной» теории булата выбранная нами для эксперимента тигельная индукционная сталеплавильная печь оказалась самым удачным агрегатом для получения булатной стали. В такой печи можно поддержать температуру сплава на любом необходимом уровне и плавить нужную массу металла.
Было решено приготовить на техническом железе и графите синтетический чугун, содержащий как можно менее вредных примесей. Предполагалось чугун расплавлять в тигле индукционной печи и погружать в него кусочки малоуглеродистого железа. Температура в печи должна была поддерживаться на уровне 1460 °C, чтобы железо не плавилось, а лишь растворялось в жидком чугуне. Наши первые эксперименты полностью подтвердили теорию А. П. Виноградова и окончательно установили, что при искусственно созданной неоднородности в жидкой или полужидкой стали можно получить слиток высокоуглеродистого сплава с включениями частиц малоуглеродистого железа. Появление булатного узора после деформации такого слитка и получение отличительных свойств, приписываемых булатам, теперь сомнений не вызывало. Надо было только хорошо отработать все детали технологии плавки. Пришлось провести немало опытов, отлить десятки слитков, чтобы научиться управлять процессом, задавать и выдерживать требуемый химический состав стали.
Краткие особенности технологии производства булата в индукционной сталеплавильной печи оказались следующими. В печь загружается железо или малоуглеродистая сталь в количестве 12–24 кг, плавится и подогревается до температуры 1650 °C. После подогрева расплав раскисляется кремнием и алюминием. Затем металл науглероживается графитом, в результате чего получается синтетический чугун с содержанием углерода 3,0–4,0 %. Когда чугун готов, в расплав вводится мелкодробленая обезжиренная стружка малоуглеродистой стали или мягкого железа в кусочках размером не более 10–15 мм. Каждый кусочек должен быть сухим, чистым, без ржавчины, цветов побежалости, каких-либо следов окисления. Количество стружки составляет 50–70 % от массы чугуна — в зависимости от требуемого состава стали.
Стружка вводится постепенно, порциями. Перед присадкой каждой порции стружки в жидкую ванну температура металла не должна превышать 1480–1500 °C. Необходимая степень оплавления стружки определяется с помощью стального прутка диаметром 15–20 мм. Таким прутком, после дачи каждой порции стружки, металл перемешивается до тех пор, пока можно ощущать удары твердых кусочков стружки, движущихся в ванне под действием электромагнитных потоков, о пруток. Таким образом, при приобретении навыка можно определять примерные размеры твердых включений малоуглеродистой стали в жидкой ванне.
По мере оплавления каждой порции стружки металл приобретает полужидкое или кашицеобразное состояние. В связи с этим перед присадкой следующей порции стружки он должен быстро подогреваться до необходимой температуры. После присадки последней порции стружки расплав, если это необходимо, нагревается до получения достаточной для разливки жидкоподвижности и раскисляется алюминием. Степень подогрева должна быть такой, чтобы в расплаве фиксировалась неоднородность — наличие недорасплавленных мелких стальных частиц. Благодаря тому, что эти частицы под действием электромагнитного поля взвешены во всем объеме жидкой ванны, готовую сталь можно выливать из тигля индукционной печи в форму.
Приготовленные нами булаты либо выливались в графитовые формы, либо оставлялись остывать в печи. В том и другом случае слиток медленно остывал в течение нескольких часов. Если полученный сплав выливался в графитовую форму, то необходимо было применять повышенный расход стружки. В этом случае получались булатные слитки с высокоуглеродистой матрицей, в которую вкраплены частицы мягкого железа (фото 5). Оплавившиеся частицы мягкого железа успевали науглероживаться в период плавки только с поверхности. Поэтому они сохраняли небольшое содержание углерода в сердцевине (0,03–0,05 %), в то время как среднее содержание углерода в матрице составляло 1.4–1,6 %.
Если же сплав до конца плавки поддерживался в кашицеобразном состоянии и застывал непосредственно в печи, применялся низкий расход стружки. Науглероживание частиц железа в этом случае происходило в большей степени. Концентрация углерода в преобладающем большинстве включений достигала 0,8–1,0 %, а содержание углерода в матрице оставалось на прежнем уровне (1,5 %). Интересно, что поверхность включений также науглероживалась более сильно (фото 6).