Жизнь на Земле – пока единственный известный нам пример жизни во Вселенной – «сделана» по рецепту, включающему удивительно малое число компонентов. Из всех имеющихся в природе химических элементов особенно важны для ее существования только 6, это – водород, углерод, азот, кислород, фосфор и сера. Из них состоит 98% материи всех живых организмов, и они являются наиболее распространенными во Вселенной, если не считать инертных газов. Этот факт указывает на родство живого вещества со звездами и дает надежду на его существование в просторах Вселенной.
Наиболее важным для жизни является углерод, легко взаимодействующий с другими элементами (водородом, азотом и кислородом), создавая тем самым широкий диапазон органических соединений – строительных блоков жизни на Земле и, возможно, повсюду во Вселенной. Углерод – это своеобразный «клей», скрепляющий большие и сложные молекулы жизни вместе. Разнообразные химические реакции, протекающие в живых организмах, требуют источника энергии, и эту энергию земной жизни дает Солнце. Жизнь также нуждается в жидкой среде, своеобразном растворителе, благодаря которому атомы и молекулы могут вступать в химические реакции. Одним из наиболее подходящих растворителей является вода. От простых органических молекул еще очень далеко до сложных, которые составляют основу того, что мы называем жизнью. Переход от неживых органических соединений к живым (способным к самовоспроизведению по генетическому коду) все еще остается темным местом в цепи общей эволюции материи.
Как же возникла жизнь на Земле? Этот вопрос очень важен для поиска иных ее форм в глубинах космоса. По теории биохимической эволюции А.И. Опарина, синтез всех необходимых для зарождения жизни компонентов мог произойти в условиях первичной атмосферы Земли, значительно отличающихся от нынешних. Накопление в океане большого количества органики могло создать «первичный бульон» для развития жизни. Если окажется, что жизнь зародилась именно на Земле, то можно было бы ожидать большого разнообразия ее типов в разных мирах, поскольку каждая планета будет обладать своим уникальным набором условий.
Согласно другой гипотезе, получившей название панспермия, основные органические вещества, необходимые для возникновения жизни, могли быть занесены из космического пространства, по которому «зародыши» жизни постоянно путешествуют. Своей популярностью эта теория обязана открытию микроорганизмов, способных выживать в самых неблагоприятных условиях, схожих с космическими: в холоде, при повышенной радиации, в экстремальной кислотности. Если эта гипотеза получит подтверждение, то она будет веским аргументом в пользу того, что жизнь должна иметь примерно одинаковые формы повсюду во Вселенной, поскольку она возникла из похожих типов молекул в похожих молекулярных облаках.
Развитие жизни – столь длительный процесс, что его можно сравнить со временем жизни звезд. Краткий срок существования массивных звезд исключает их из числа кандидатов, имеющих обитаемые планеты. Такие планеты могут находиться около звезд (масса которых равна массе Солнца или чуть меньше ее), стабильно излучающих энергию в течение времени, вполне достаточного для развития разумной жизни. Большая часть солнечной энергии выделяется в видимой области спектра, создавая благоприятные для жизни условия, поэтому обитаемые планеты лучше искать вокруг звезд, имеющих температуры и химический состав, близкие к солнечным значениям.
Среди 100 миллиардов звезд в нашей Галактике имеется вполне достаточно стабильных, способных выделять столько энергии, сколько необходимо для развития жизненно важных химических процессов. Почти повсюду найдено и большое количество углерода. Однако для возникновения биологической жизни очень важным фактором является наличие воды в жидком состоянии, зависящее от расположения планеты. Если планета находится слишком близко к своей звезде – вода испарится, если очень далеко – замерзнет. Орбита планеты должна быть стабильной и близкой к круговой, потому что при беспорядочном вращении невозможно постоянно поддерживать жидкую воду на поверхности. Та область вокруг звезды, где жидкая вода может долгое время сохраняться на планете, получила название «зона обитания». Для нашего Солнца она начинается за Венерой и кончается за Марсом.
Независимо от того, насколько отличаются условия на разных планетах, несомненно одно: жизнь и ее окружающая среда неразрывно связаны. Живые организмы изменяют условия планеты, поскольку они потребляют пищу и энергию и выделяют отходы. Изменение планетной окружающей среды, вызванное биологической, геофизической или климатической активностью, в свою очередь, заставляет жизнь приспосабливаться к новым условиям, создавая в результате богатое разнообразие растений и животных, с которыми мы сталкиваемся на Земле.
Нигде эта зависимость не проявляется так очевидно, как в наблюдаемых характеристиках атмосферы планеты. Так что предстоит выяснить, каким образом атмосферные газы, произведенные геологической активностью, отличаются от тех, которые произведены жизнью. Анализируя цвета в инфракрасной области излучения, астрономы будут искать атмосферные газы, такие как углекислый газ, водяной пар и озон. Вместе с температурой и радиусом обнаруженной планеты эта информация позволит определить, какие планеты являются пригодными для жизни или даже уже населены ее зачаточными формами. Своеобразным признаком жизни может быть существование в атмосфере планеты большого количества кислорода. В земной атмосфере кислород является побочным продуктом фотосинтеза – процесса, с помощью которого зеленые растения и некоторые другие организмы, используя солнечный свет, превращают углекислый газ и воду в углеводы. Но молекула кислорода не остается в атмосфере долго, а объединяется с другими молекулами в процессе, называемом окислением. Поэтому планета с атмосферой, богатой кислородом (подобно Земле), должна содержать источник его пополнения (жизнь).
И тем не менее присутствие кислорода, хотя и весьма важное, не может быть принято как однозначный признак жизни. А вот обнаружение озона, сосуществующего вместе с газами (окись азота или окись метана), может служить убедительным доказательством не только того, что планета пригодна для жизни, но и того, что она обитаема.
Вполне вероятно, что даже те планеты, где кислорода вообще не будет обнаружено, также могут поддерживать жизнь. Ведь не исключено, что фотосинтез может осуществляться с другими элементами, например с серой, выполняющей роль кислорода. В иных мирах биологические процессы могут быть совсем не похожими на земные, так как химические условия на других планетах могут привести к возникновению абсолютно других организмов.
Марс
Согласно некоторым предположениям жизнь могла возникнуть и на Марсе. Некоторые ученые даже предполагали, что изначально она и возникла именно там и только затем была перенесена на Землю. Возможно, геологи, анализируя осадочные марсианские породы старше 4 млрд. лет, сумеют обнаружить окаменелые остатки не только бактерий, но и более сложных организмов.В настоящее время аппарат Mars Global Surveyor, находящийся на орбите, собирает большое число данных относительно поверхностных особенностей, атмосферы и магнитных свойств Красной планеты.
Европа
Исследование Европы – одной из гигантских лун Юпитера, указывает на то, что под ее ледяной поверхностью скрывается огромный океан жидкой воды. Это обширное подледное море вполне могло дать кров микроорганизмам, по размеру и сложности подобным земным. Хотя солнечный свет не может обеспечить достаточно энергии для поддержания жизни на Европе, поэтому ученые полагают, что наиболее вероятным источником энергии являются заряженные частицы, постоянно летящие с соседнего Юпитера.
Для более детального исследования Европы запланирован запуск летательного аппарата Europa Orbiter (2003 год). Весьма вероятно, что вслед за ним будет произведен запуск станций Europa Ocean Observer и Europa Lander Network (посадочный модуль).