ТОЧКА НА ПЛОСКОСТИ
Не знала Точка ни забот, ни тревог, но пришло время и ей подумать о своем месте на плос-
кости.
— Я хочу стать центром окружности! — заявила Точка.
Что ж, по законам геометрии все точки равны и каждая из них может стать центром окружности. Для этого нужны только циркуль и карандаш, и ничего больше.
Но едва лишь к ней прикоснулся циркуль, Точка завопила:
— Ой! Больно! Ой! Что вы колетесь?!
— Но вы хотели стать центром окружности, — напомнил Циркуль.
— Не нужен мне ваш центр, не нужна мне ваша окружность, оставьте меня в покое!
Оставили Точку в покое. Но ненадолго. Должна же Точка занять какое-то место на плоскости!
— Я хочу стать вершиной угла, — заявила Точка на этот раз.
По законам геометрии вершиной угла тоже может стать каждая точка. Для этою на прямую, на которой она находится, достаточно опустить перпендикуляр.
Стали опускать на прямую перпендикуляр.
— Вы что, ослепли?! — закричала Точка при виде Перпендикуляра. — Вы падаете прямо на меня. Разве вам мало места на плоскости?
Растерялся Перпендикуляр, повис в воздухе.
— Погодите, дайте-ка мне, — сказала Секущая. — У меня эта Точка станет вершиной сразу четырех углов.
Но не тут-то было. При виде Секущей Точка прямо-таки забилась в истерике.
— Не секите меня! — рыдала она. — Я не привыкла, чтобы меня секли!
Что было с ней делать? Махнули на Точку рукой. Не стала она ни центром окружности, ни вершиной угла, а осталась простой точкой на простой прямой, параллельной тысячам других прямых.
СТЕПЕНЬ
Много лет прослужила Единица без единого замечания, и нужно же было как-то отметить ее заслуги!
Поэтому Единицу решили возвести в степень. Думали этими ограничиться, но опять Единица служит прилежно, а замечание — хоть бы одно!
Возвели ее еще в одну степень. И опять ни одного замечания. В третью степень возвели, в четвертую, в пятую — нет замечаний!
Далеко пошла Единица. Теперь она Единица в тысячной степени. Посмотреть на нее — обычная Единица, но как глянешь на степень — да, это величина!
А что изменилось от этого? Ничего, ровным счетом. Ведь Единица в тысячной степени — та же Единица.
И на тысячную долю не больше!
ПРОСТАЯ ДРОБЬ
У Числителя и Знаменателя — вечные дрязги. Никак не поймешь, кто из них прав. Числитель толкует одно, а Знаменатель перетолковывает по-своему. Числитель говорит:
— У меня положение выше, почему же я меньше Знаменателя?
А Знаменатель свое:
— Я-то числом побольше, с какой же стати мне ниже Числителя стоять?
Поди рассуди их попробуй!
И ведь что вы думаете — была такая попытка. Целое Число, которому надоело это брюзжание, сказало им напрямик:
— Склочники несчастные, чего вы не поделили? В то время, когда у нас столько примеров, столько задач…
— Тебе, Целому, хорошо, — проворчал Знаменатель, и Числитель (в первый раз!) согласился с ним.
— Знаменательно! — воскликнул Числитель. — Знаменательно, что именно Целое Число делает нам замечание!
— А кто вам мешает стать Целым Числом? Сложитесь с какой-нибудь дробью.
— Ладно, обойдемся без ваших задач и примеров, — сказал Числитель, а Знаменатель, придвинувшись к Целому Числу, выразил эту мысль более категорически:
— Проваливай, пока цело!
Целое Число махнуло на них рукой и приступило к очередным задачам.
А Числитель и Знаменатель призадумались. Потом Числитель нагнулся, постучал в черточку:
— Послушайте, — говорит, — может, нам и впрямь с другой дробью сложиться?
— Э, шалишь, брат, — возразил Знаменатель, — хватит с меня и одного Числителя!
— Если уж на то пошло, — обиделся Числитель, — мне тоже одного Знаменателя предостаточно.
Еще подумали.
Потом Знаменатель стал на цыпочки, постучал в черточку:
— Слышь, ты! А если нам так стать Целым Числом, без другой дроби?
— Можно попробовать, — соглашается Числитель. Стали они пробовать. Числитель умножится на два, и Знаменатель — не отставать же! — тоже на два. Числитель на три — и Знаменатель на столько же.
Умножались, умножались, совсем изнемогли, а толку никакого. Та же дробь, ни больше ни меньше прежней.
— Стой! — кричит Знаменатель. — Хватит умножаться. Делиться давай. Так оно вернее будет.
Стали делиться.
Знаменатель на два — и Числитель на два. Знаменатель на три — и Числитель на столько же. А дробь — все прежняя.
СУММА
И так, построились по росту: впереди Большое Слагаемое, за ним Среднее, а уж потом Самое Маленькое. Есть? Что там у вас, сзади?
Сзади высовывается Самое Маленькое Слагаемое:
— Я хочу сказать: если оно большое, так ему, значит, впереди? А если я маленькое, так мне, значит, сзади?
Сумма задумывается. Она что-то считает, прикидывает, потом говорит:
— Справедливое замечание, придется его учесть. Итак, построились по росту: впереди Самое Маленькое Слагаемое, за ним Среднее, а уж потом Большое. Есть? Что там у вас, сзади?
— Неудобно как-то, — басит Большое Слагаемое. — Я все-таки самое большое, за что же меня в конец?
Опять думает Сумма. Да, неудобно получается.
— Сделаем так: впереди Самое Маленькое Слагаемое, за ним Большое, а уж потом Среднее. Построились? Что там у вас?
— Нег, все-таки это несправедливо, — говорит Среднее Слагаемое. — Почему именно я должно стоять сзади всех?
Вот именно — почему?
— Действительно, — соглашается Сумма, — придется кое-что изменить. Построимся так: впереди Большое Слагаемое, за ним Среднее, а уж потом — Самое Маленькое.
— Но я опять сзади всех! — тянется сзади Самое Маленькое Слагаемое.
— И то правда. Тогда сделаем так…
Строит Сумма, перестраивает. Можно того наперед, а можно и этого. Ей-то, Сумме, лично все равно: от перестановки мест слагаемых Сумма не меняется.
ТРЕУГОЛЬНИК
Задумал Угол треугольником стать. Нашел подходящую Прямую линию, взял ее с двух сторон за две точки — и вот вам, пожалуйста, чем не треугольник?
Но Прямая оказалась строгой линией. Сдерживает она угол, ограничивает. Теперь ему не та свобода, что прежде.
А вокруг, как назло, ломаные линии вертятся, выламываются:
— Ну как ты, Угол, со своей Прямой? Ладите?
Что им ответишь? Молчит Угол. Молчит, а сам думает: «Зря я такую прямую линию взял. Ломаные куда удобней!»
За этой мыслью пришла и другая: «А вообще-то, чем я рискую? Можно такую ломаную найти, что она с моей прямой и не пересечется».
Такая ломаная линия быстро сыскалась. Соединил ею Угол те же две точки, что и Прямая соединяла, и — доволен.
Потом еще одной ломаной обзавелся, потом еще одной. А Прямая верит Углу, ни о чем не догадывается.
Но вот ломаные линии, как набралось их много; стали между собой пересекаться. Так закрутили Угол, так завертели, что его среди них и не видать.
Еле выпутался бедняга.
«Хватит, — решил, — возиться с этими ломаками. Лучше уж прямой линии держаться».
И опять остался Угол со своей Прямой. Дружно живут. Хороший треугольник.
Оно и понятно: через две точки, как свидетельствует геометрия, можно провести только одну прямую.
А ломаных — сколько угодно.