Пьезоэлектрический эффект таких минералов и веществ, как кварц, турмалин, сегнетова соль, титанат бария, давно используется в технике. Но вот оказалось, что ряд горных пород -- кварциты, гнейсы и даже тривиальные граниты -- способен откликаться электромагнитной волной на упругую волну взрыва. Для улавливания этой ответной электромагнитной волны служат простейшие приемники -- металлические стержни, вставленные в землю. Индуцированный в стержнях электрический ток подводится к усилительному устройству, связанному с самописцем.

Кварциты часто являются золотоносными, и, таким образом, акустико-электромагнитное зондирование дает ориентир первичного поиска золотоискателям.

Но и простейший ультразвуковой эхолот с некоторых пор стал помощником золотодобытчиков, причем не в море, а на земле. При разработке дренажных котлованов очень важно бывает знать, сколько еще продуктивного золотоносного песка осталось и как скоро в том или ином месте котлована черпаки драги достигнут пустой породы. Нужны достаточно мощные и направленные звуковые импульсы для того, чтобы проникнуть в слой рыхлого песка до подстилающего грунта и определить толщину слоя (а заодно и глубину его залегания). Подобный прибор приходит на золотых и платиновых приисках на смену дедовской маркшейдерской многометровой рейке или трубе, которую ранее старательно втыкали в донные слои различных мест котлована.

Соледобытчики, использующие в своей работе метод подземного выщелачивания, теми же звуколокационными приборами определяют размеры и конфигурацию солесодержащих включений, размеры пустот и камер, остающихся после изъятия соли с помощью поверхностных "соляных фонтанов".

Обвалы в шахтах... Эти страшные события могут приводить к гибели людей, и давно уже во всем мире стали раздумывать, как предугадать возможное несчастье. Родилась мысль привлечь для этого сейсмоакустические методы и аппаратуру, значительно более чувствительную, чем человеческий слух, и способную объективно регистрировать подземные шумы в течение длительного времени.

Около четверти века назад один из видных советских акустиков М. С. Анцыферов, занимавшийся до того вопросами архитектурной и электроакустики, возглавил эту работу. В Институте горного дела имени А.А.Скочинского была организована соответствующая лаборатория, и начались регулярные акустические наблюдения в шахтах. Особое внимание обратили на шахты Донбасса, где уже тогда угледобыча производилась на глубинах до полукилометра. В настоящее же время осваиваются глубины более километра, а ведь чем больше глубина, тем выше давление в пластах породы и, следовательно, тем больше вероятность опасных выбросов газа, угля и других сред

Акустическая эмиссия. Этими словами специалисты сейчас обозначают звуки, которые предшествуют ряду механических явлений например растрескиванию и разрушению металлов. Горные акустики изучали мощные звуковые сигналы, которые, как оказалось, начинает излучать порода, перед тем как в ней произойдут разломы и разрывы.

Спектр этих акустических импульсов достаточно широк, наиболее интенсивные составляющие находятся в области частот 300--600 герц. Но вот беда: спектр шумов в породе при работе отбойных молотков и врубовых машин примерно одинаков. Значит, надо измерять подземные шумы вдали от забоя, где производятся работы, а также в ночное и обеденное время.

Всегда ли мощные звуковые импульсы предшествуют выбросам угля и газа? Требуют ли они, эти импульсы, обязательного удаления шахтеров из забоя? Оказывается, не всегда были случаи когда работа прерывалась, а динамических явлений в шахте не происходило. Автор как-то спросил М. С. Анцыферова, часто ли ему приходилось выступать поневоле в роли пастуха-лжеца из известной басни, которому впоследствии уже никто не верил. Он ответил

-- Бывало, конечно, и недоверие и даже упреки за невыполнение плана по вине акустиков. Постепенно все сошлись на том, что лучше и раз, и два, и три выйти из забоя, чем хоть раз быть засыпанными. Но и мы повысили точность своих прогнозов.

Какова же она сейчас? Накопленный опыт, использование разработанной горными акустиками системы статистических критериев повысили надежность текущего сейсмоакустического прогнозирования опасности динамических явлений в шахтах до 95-- 98%. Более того, применение направленных систем геофонов дало возможность определять координаты очагов акустических импульсов, то есть, по существу, и очагов возможных подземных катаклизмов, больших и малых.

Службы производственного акустического прогноза подземных динамических явлений начали работать в шахтах Донбасса с 1965 года. В первый же год введения служб количество неожиданных динамических явлений сократилось в 3,5 раза, а через 5 лет -- в 20 раз, хотя в этот период протяженность вибросоопасных зон в шахтах увеличилась вдвое вследствие перехода выработок на нижележащие горизонты.

В г.Прокопьевске (Кемеровская область) группа ученых под руководством П. В. Егорова работает над тем, как на основании акустического прогнозирования вести разработки угля, чтобы уменьшить вероятность "горного удара".

Неуютен труд шахтных акустиков. Ученые в комбинезонах и касках с лампочками шлепают по мокрым штольням, иногда ползают в них на коленях, отыскивая, где бы установить свои геофоны и усилители. Нет-нет, и крепкое соленое словцо шахтеров, которым помешали, сопровождает действия научных работников. Но наградой им служит сознание того, что их работа сохранила жизнь не одному горняку.

Раз уж земная среда проводит звук, то можно не сомневаться, что подземная акустика найдет еще множество применений.

ЗВУКИ В ВОДЕ

Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь идущие вдали корабли.

Леонардо да Винчи

Есть что-то удивительное в том, что почти полтысячелетия назад Леонардо предвосхитил первоначальное развитие гидроакустики как науки об обнаружении кораблей в море по звуку. Если не считать первых робких попыток эхолотирования, то гидроакустика в XX веке развивалась сначала как область военной науки и техники. Например, в России еще в 1905 году были разработаны совершенные по тому времени приборы для звуковой связи между погруженными подводными лодками. К 1912 году относится изобретение К. В. Шиловским и П. Ланжевеном первого гидролокатора.

В наше время, в период интенсивного освоения Мирового океана, гидроакустические приборы и методы достигли высокой степени совершенства, а области применения гидроакустической техники все расширяются.

Разумеется, проще всего было бы отослать читателя к соответствующим источникам, например к книгам автора по гидроакустике. Но из песни слова не выкинешь, а потому и в этой книжке, где трактуются самые различные акустические вопросы, следует сказать несколько слов о звуках под водой, понимая под этим преимущественно звуки в больших природных водоемах.

Начнем с краткого описания некоторых физических явлений при распространении звука в море.

Рефракция. Это, как известно, искривление лучей в среде с переменным показателем преломления. Сплющенная Луна, миражи в пустыне, плавающие в воздухе острова над морем -- классические примеры оптической рефракции в воздухе. Акустическую рефракцию в воздухе заметить несколько труднее, но она тоже имеет место. А вот под водой звуковая рефракция проявляется в любое время года практически повсеместно.

У гидроакустиков есть хорошее мнемоническое правило: луч, подобно жаждущему человеку, устремляется в сторону более холодных и менее соленых слоев воды. Есть, правда, еще один фактор, который труднее втиснуть в рамки мнемоники. Это гидростатическое давление, зависящее от глубины. От его величины также меняется скорость звука, а следовательно, и показатель преломления. В данном случае его изменение таково, что звуковой луч стремится вверх.

Пожалуй, особенно отчетливо проявляется влияние температуры зимой, когда верхние слои морской воды более холодные, чем нижние. Луч тогда под определенным углом устремляется к поверхности моря, отражается от нее, вновь и вновь приходит к ней, постепенно затухая по мере удаления от источника звука.


Перейти на страницу:
Изменить размер шрифта: