— Но это означает, что одну и ту же фразу приходится переводить сотни, а то и тысячи раз, пока не будет найден окончательный перевод?

— У нас есть для этого достаточные вычислительные мощности. Кроме того, это приходится делать, только когда перевод идёт между какой-нибудь новой парой языков. Для наиболее часто встречающихся пар языков у нас уже есть готовые словари прямого перевода, т. е. перевода без языка-посредника, куда постоянно заносятся новые готовые метафоры, найденные с помощью только что описанного мною процесса усекновения дерева сообщения.

— И что же, в процессе усекновения каждый раз удаётся выйти на короткую метафору? Во всех случаях без исключения?

— Разумеется, я несколько упростил описание процесса усекновения. На самом деле здесь есть одна тонкость — в каком порядке и какие ветви отсекать. Наши математики долго бились над этой проблемой, пока не нашли её решение. Для словарей каждого языка по особым правилам заранее рассчитывается то, что мы называем «рельефом поля понятий». После этого выбрать правильный порядок усекновения очень просто — надо лишь представить себе, что над рельефом поля идёт дождь, и следовать тому пути, по которому потекут ручьи. Понятно?

— Не очень.

— Что поделать. Моя последняя фраза является ярким примером метафорического перевода очень сложного математического высказывания. Метафоры по самой своей природе не могут обеспечить стопроцентного понимания, но, по крайней мере, они создают ощущение хоть какого-то понимания, что очень важно при контакте.

— Вообще-то практически вся земная научно-популярная литература написана именно таким методом и таким языком. И ничего — читают! Некоторые даже думают, что всё поняли.

— Вот видите! И ещё насчёт рельефа поля. Благодаря ему удаётся, не производя перевода, заранее оценить, насколько уменьшится переведённая фраза при каждом усекновении фразы на Интрагалакте. Так что нам теперь не приходится на самом деле переводить одну и ту же фразу сотни раз, пока мы не найдём метафору. Это очень экономит вычислительные мощности.

2.6. Узел сети Технокосм

Инспектор подошёл к большой классной доске, испещрённой блок-схемами различных систем типового узла Технокосма, и начал свою лекцию:

— На первый взгляд может показаться, что Технокосм — это всего лишь сеть передачи данных между звёздами. Но если близко рассмотреть устройство каждого отдельного узла сети, то мы увидим, что он представляет собой нечто гораздо большее, чем концентратор или маршрутизатор сетевого трафика.

Технокосм — это не только сеть, это ещё и интерфейсы с физическим миром, и все они реализованы именно на уровне узлов сети.

Рассмотрим схему типичного узла Технокосма. Обычно узлы располагаются вблизи звёзд, чаще всего на планетах, предпочтительно на тех планетах, где имеется вода в жидкой фазе — вода значительно облегчает размножение наномашин, из которых физически строится всё оборудование узла, а близость звезды помогает решать энергетическую проблему — наше оборудование потребляет довольно много энергии.

Впрочем, из этого правила есть отдельные исключения — например, существуют несколько узлов, которые располагаются на ядрах комет, дрейфующих в межзвёздном пространстве. В качестве источника энергии они используют очень компактные и эффективные ядерные реакторы, работающие на водороде, содержащемся во льду комет. Такие узлы появились в Технокосме относительно недавно, несколько миллионов лет назад. После изобретения этих компактных реакторов мы изменили протокол, прошиваемый в памяти наших наномашин, и теперь они начинают строительство приёмопередатчиков, антенн и реактора для их питания, как только попадают в жидкую воду на комете. После этого комета уходит в межзвёздное пространство с уже работающим узлом Технокосма. Но, в силу ограниченности ресурсов кометного ядра, такие узлы могут играть лишь вспомогательную роль ретрансляторов — полномасштабный узел требует строительства огромных сооружений, для которых на кометном ядре просто не хватит материалов. Возможно, что в связи с недавним нашим изобретением, позволяющим создавать материю прямо из вакуума, положение изменится, но пока это устройство ещё находится в стадии испытаний.

Поэтому вернёмся к расмотрению типового узла, базирующегося на планете земного типа.

Основные компьютеры узла обычно располагаются на планете — поближе к жидкой воде, в которой обычно растворены все химические элементы, необходимые для нашего строительства. Станции межзвёздной связи, содержащие приёмопередатчики и антенны, располагаются на орбитах вокруг планеты и одна на орбите планеты вокруг местной звезды для того, чтобы избежать затенения планетой или звездой и, таким образом, обеспечить полный обзор небесной сферы. Источники питания располагаются рядом с основными потребителями: на планете, вблизи компьютеров — это реакторы на водороде; в космосе, рядом со станциями связи — это преобразователи солнечной энергии.

Образно говоря, компьютеры — это мозг узла, энергоустановки — его сердце, а станции связи — его рот и уши, с помощью которых он общается с другими узлами в Галактике.

Но самая интересная часть каждого узла — это интерфейс с физической Вселенной, состоящий из средств наблюдения и исполнительных органов — это глаза и руки узла.

— Средств наблюдения? — переспросил Левшов. — Это что-то вроде тех искусственных комариков, что за нами наблюдали?

— Комарики — это мелочь, — ответил Инспектор. — Как средства наблюдения за местными условиями на планете они значительно уступают нанороботам, устанавливающим информационый интерфейс между Технокосмом и нервной системой местных жителей — тот самый интерфейс, через который мы с Вами сейчас общаемся. Очень удобен для исследований планеты — максимальная информативность при минимальной заметности для местного населения.

— А в качестве исполнительного органа может выступать человек, который с помощью этого интерфейса полностью превращён в Вашу марионетку?

— Потенциально — да, хотя на практике мы стараемся не вмешиваться в дела местных цивилизаций. На планете, принадлежащей другой цивилизации, мы можем выступать лишь в роли наблюдателей.

Нет, когда я говорил о средствах наблюдения и исполнительных органах, я в первую очередь имел в виду устройства совершенно иного масштаба. Например, гигантский телескоп, который мы построили на обратной стороне Луны и который несколько лет назад обнаружил огромное ядро кометы, движущееся по траектории столкновения с Землёй.

— Вы хотите сказать, что Земле угрожает столкновение с кометой?

— Теперь уже нет. Как только эта комета была обнаружена, наши нанороботы, находящиеся на орбите вокруг Земли, немедленно собрали ракету, которая отправилась к этой комете. По прибытии на поверхность кометы нанороботы быстро переделали ракету в ядерный реактор и углубили его внутрь кометного ядра, где вырабатываемое им тепло стало превращать кометный лёд в пар. Вырываясь наружу из кометы, пар создавал струю с реактивной тягой, которая и перевела комету на другую траекторию, не задевающую Землю. Если бы не это, мы бы сейчас с вами не разговаривали — по нашим оценкам, столкновение с этой кометой должно было привести к полному уничтожению жизни на Земле.

Этот пример наглядно показывает роль средств наблюдения и исполнительных органов в жизни Технокосма — мы наблюдаем, чтобы познавать, а познав необходимость действия для того, чтобы выжить, мы действуем. Технокосм — это не что иное, как средство выживания цивилизаций в такой опасной среде, как космос. Мы хранители разума во Вселенной, уберегающие его от уничтожения слепыми силами стихии.

Особо следует упомянуть экспериментальные установки и полигоны Технокосма, на которых ведутся разработки новых технологий. Технологическая основа Технокосма всё время обновляется, появляются новые, всё более мощные источники питания, пропускная способность каналов связи увеличивается, растёт производительность компьютеров, плотность хранения информации в запоминающих устройствах, чувствительность приборов наблюдения. Исполнительные органы становятся всё более мощными, гибкими, способными ко всё более тонким операциям. Всё это основывается на всё новых и новых физических принципах.


Перейти на страницу:
Изменить размер шрифта: