Глава 10 

Важнейший переключатель

Мы остановились на том, что внутренняя стабильность организм;! обеспечивается тремя системами самого нижнего уровня, функционирование которых, с точки зрения управления, можно охарактеризовать одним словом — автономная работа. Мы показали также, к;) к эти системы питают информацией вертикальную командную структуру, порождая намерения (в отличие от рефлекторной реакции) внутри ее "думающей палаты". Заключительная часть этой второй книги посвящена описанию работы всей пятиуровневой системы управления корпорацией как целым организмом. А эта глава посвящена системе 4 как главному механизму, связывающему волевое и автономное управление. Этот механизм является важнейшим переключателем во всей организации.

Переключатель — это устройство или целый механизм, который направляет сигнал из одной части системы в другую. Мы уже встречались со многими переключающими устройствами при рассмотрении их как физиологического, так и управленческого аспектов. Они не выступали в роли простых щелкающих выключателей электрического освещения ни в одном из этих контекстов. Их природа довольно подробно исследовалась в первой части книги, и там мы назвали их алгедонодами. Теперь пришло время вернуться к ним с позиции нейрофизиологии.

Многие рецепторы, активизирующие нервную систему, подобны рецепторам, которые уведомляют машины, работников и управляющих об изменениях, являются своеобразными переключателями. Эти рецепторы присоединены к соответствующему внутреннему кабелю, который они возбуждают или вдоль которого передают сигнал. Чтобы бегущий по такому кабелю сигнал не пропал на его конце, должно быть осуществлено переключение на другую кабельную линию. Как мы видели, нейроны в человеческом теле так и работают, передавая сигнал дальше от одной нервной клетки (плюс длина кабеля — аксона) другой на синапсе. Теперь необходимо более внимательно рассмотреть все эти переключатели.

Инженеры и специалисты вычислительной техники могут рассматривать переключатель как устройство для передачи и, весьма вероятно, для усиления сигнала. Иначе говоря, они рассматривают его в том смысле, что поступивший сигнал возбуждает систему, следующую за данным переключателем. То же самое происходит и в теле человека, но здесь имеется и другая возможность: сигнал может приглушить, а не только возбудить систему. Этот механизм в высшей степени важен в связи с проблемой перегрузки, при возникновении которой могла бы оказаться затрудненной работа всех линий связи и переключателей. Намного раньше мы показали, что согласно одной из теорем теории информации требуется большая мощность каналов связи, а не разнообразие системы входа. В теле человека этот закон исполняется за счет большого резерва их пропускной способности. Максимальный темп разрядки рецепторных органов лежит где-то в пределах 100-200 имп/с. В то же время каналы связи нервной системы в секунду могут справляться с 300-400 импульсами. Но даже и при этом мы не можем позволить себе возбуждать всю нервную систему каждым поступающим на вход импульсом. Поэтому всякий раз, когда начинается передача данных по нервной системе, вступает в действие двойственный механизм, в котором возбуждение балансируется с торможением, так что не происходит простое срабатывание переключателя, как можно было бы предполагать. То же самое справедливо и для управления, где множество поступающих сигналов вполне могут подавляться, а не передаваться и усиливаться при каждом переключении. Однако было бы ошибкой думать об этом механизме как об устройстве, решающем задачу "передавать не передавать". Он значительно более деликатен, как и алгедонод.

Рассмотрим самый типичный нейрофизиологический переключатель — синапс. Между нейроном и его соседом физически существует зазор, называемый, синаптическим промежутком, который должен быть перекрыт. При возбуждении, как представляется, действующий потенциал (пробегающий по нерву импульс, который можно .видеть с помощью осциллографа), достигнув синаптического промежутка, вызывает выброс химического вещества, которое и перекрывает этот промежуток. Это вещество вызывает деполяризацию мембраны на другой стороне, регенерируя действующий потенциал на нервном волокне. Но другое нервное волокно, работая в интересах того же нейрона, может выдать подавляющий импульс. В результате произойдет сверхполяризация, которая превзойдет эффект первого импульса — возбуждающего. И, наоборот, импульс подавления может быть пре-синаптическим; он сам поступит в нервное волокно и уничтожит (или, по крайней мере, уменьшит) поступивший импульс возбуждения. Как бы там ни было, сеть дендритов, передающая эти альтернативные указания, создана, а эффект воздействия на нейрон через синаптический промежуток представляет собой некоторую сумму разных импульсов. Изменит или нет нейрон свое состояние, зависит от электрического порога его срабатывания. Нейрон после суммирования импульсов будет или не будет возбужден, так же как это происходит в алгедоноде.

Таким образом, синапс или в нашем случае любой другой переключатель (как рецептор, эффектор или целый их комплекс в виде нервного узла) срабатывает при некотором пороге, а этот порог определяется химически. Уровни калия и соды за и перед мембраной клетки, в частности, определяют в любой данный момент порог ее срабатывания. Этим же он и меняется. Фактически весь этот механизм (который совсем недавно был понят) очень красив, а точность, с которой он работает, почти невообразима. Конечно, стоило сделать такое длинное отступление просто из удовольствия разобраться в этом механизме.

Синаптический промежуток — это зазор в переключателе шириной в 200 ангстрем, а один ангстрем равен одной десятимиллионной доле миллиметра. Сам синаптический узел, на который прибывают нервные импульсы, содержит мельчайшие пузырьки с упомянутым химическим веществом, и один или два таких пузырька взрываются, когда поступает электрический импульс. Небольшой пакетик этих пузырьков настолько мал, что состоит, вероятно, не более чем из 10 000 молекул, но этого достаточно, чтобы изменить проводимость мембраны на другой стороне синаптического промежутка (на другой стороне зазора) за какую-то тысячную долю секунды. Но этого времени достаточно, чтобы позволить ионам (как заряженным частицам) пройти через мембрану, где они определяют, регенерировать или нет импульс на другой части нерва. Очевидно, что и поры, через которые проходят ионы подавления, очень малы; фактически они в 1, 2 раза больше, чем ион гидратированного калия. Конечно, это точная сетка. Ион диаметром 1, 14 проходит, а с диаметром 1, 24 нет. Это означает, что ионы соды (они возбуждающие) не, могут пройти никак, поскольку они слишком велики. Еще того интереснее узнать, что поры синапсов подавления независимо от вида живого организма всегда одного размера, определенного размером ионов. Они одинаковы для всех видов позвоночных и, как теперь стало известно, такие же и у моллюсков. На стороне возбуждения, как и предполагалось, поры мембраны синапсов в два раза больше, так что ионы соды проходят свободно. Наконец, считая, что конечный эффект возбуждения или подавления состоит в регенерации импульса в соседнем нерве, укажем, что этих мельчайших химических реагентов достаточно для усиления проходящего импульса в сотни раз.

Таким образом, мы видим здесь алгедонод, близкий к идеальному. Он выступает аналогом управленческого переключателя, который отвечает на вопрос "делать или не делать", но решение которого определяется на основе конфликтующего набора побуждающих и тормозящих импульсов на входе и порогом срабатывания, который может изменяться. Он, однако, не является, хотя и должен таким быть, аналогом какой-либо формальной информационной системы управления, компьютеризированной или нет, из числа тех, с которыми я знакомился. Группы управляющих именно так и работают.

Мы говорим об избирательных изменениях, зависящих от условий, сложившихся вокруг данных нейронов или данных групп управляющих, применительно к нашей кибернетической модели на этом, четвертом, уровне. И тем не менее имеются более общие, вероятно, значительно более общие пути, о которых известно, что по ним осуществляется управление как в человеческом теле, так и в фирме с целью изменить работу нервной системы — усилить ее активность или подавить. Сами гормоны (а передаваемые вещества и есть гормоны) могут поставляться организму более или менее в изобилии. Все гормональные лекарства обладают возбуждающим или депрессивным эффектом. Они легко распознаются по поведению, но они действуют в микромасштабе, а именно, проникая в микропереключатели, они меняют порог чувствительности алгедонода.


Перейти на страницу:
Изменить размер шрифта: