О получении пористых материалов из А. см. Мипора.

  Лит.: Петров Г. С., Левин А. Н., Термореактивные смолы и пластические массы, М., 1959; Справочник по пластическим массам, ч. 1, М., 1967, с. 396.

Аминосахара

Аминосахара', органические соединения, в молекулах которых содержатся группы, характерные для сахаров, — альдегидная (CHO) или кетонная (CO) группа, несколько гидроксильных (OH) и одна или несколько аминогрупп (NH2). Углеродная цепь в А. может быть неразветвлённой или разветвленной. Как производные моносахаридов, А. обладают восстанавливающими свойствами и дают реакции сахаров, но проявляют и свойства органических оснований. А. широко распространены в природе, встречаются во всех тканях животных, растений, в микроорганизмах, в составе сложных белков и липидов, полисахаридов, гликозидов и др.; они входят в состав многих гормонов, антибиотиков и др. биологически значимых веществ. Наиболее распространены глюкозамин и галактозамин. Многие А. получены синтетически.

  Лит.: Степаненко Б. Н., Углеводы. Успехи в изучении строения и метаболизма, М., 1968.

  Л. И. Линевич.

Аминоспирты

Аминоспирты', аминоалкоголи, органические соединения, содержащие —NH2- и —ОН-группы у разных атомов углерода в молекуле; высококипящие маслянистые жидкости со свойствами оснований. А. получают действием аммиака и аминов на окиси олефинов, например:

Большая Советская Энциклопедия (АМ) i-images-199682290.png

  Известны и др. способы их синтеза.

  А., особенно этаноламин, широко используют в производстве моющих средств, эмульгаторов, косметических и лекарственных препаратов, а также как поглотители кислых газов (например, CO2). К А. относится холин, которому принадлежит важная роль в обмене веществ у человека и животных; препараты холина применяют для лечения печени. Некоторые алкалоиды, например эфедрин, являются А., к ним принадлежит также важный гормон адреналин.

Аминотрансферазы

Аминотрансфера'зы, аминоферазы, трансаминазы, ферменты из группы трансфераз, катализируют перенос аминогрупп (—NH2) от a-аминокислот на a-кетокислоты. А. обнаружены в большинстве тканей животных и растений, играют важную роль в азотистом обмене. Роль А. в процессе переаминирования открыта советскими биохимиками А. Е. Браунштейном и М. Г. Крицман (1937). Коферментом трансаминазных реакций является пиридоксальфосфат, альдегидная группа которого служит промежуточным акцептором аминогруппы; получающийся таким образом пиридоксаминфосфат передаёт её на кетогруппу аминируемой кислоты. Реакция обратима.

  А. А. Болдырев.

Аминофенолы

Аминофено'лы, C6H4(NH2)OH, органические соединения; кристаллы. Известны три изомера А.: о-А., tпл 174°С; m-A., tпл 123°С и n-A., tпл 186°С. А. амфотерны и образуют соли как с кислотами, так и щелочами. Общий способ получения А. — восстановление соответствующих нитрозо- или нитрофенолов:

  C6H4(NO2)OH + 6H = C6H4(NH2)OH + 2P2O.

  Изомеры (мета- и пара-) применяют в производстве сернистых и некоторых других красителей (например, коричневых красителей для меха). n-Аминофенол и его производные, например метол, — широко распространённые проявляющие вещества в фотографии.

Амины

Ами'ны, обширный класс азотсодержащих органических соединений, продукты замещения одного, двух или трёх атомов водорода в аммиаке NH3 на органические радикалы R. По числу замещенных атомов водорода различают: первичные А. RNH2, вторичные R2NH и третичные R3N (где R — CH3, C2H5, C6H11, C6H5 и др.). По радикалу А. делят на алифатические, например метиламин CH3NH2, диметиламин (CH3)2NH и т. д.; алициклические, например циклогексиламин C6H11NH2; ароматические, например фениламин, или анилин, C6H5NH2, и гетероциклические, например 2-аминопиридин C5H4N(NH2). А. с двумя, тремя и более аминогруппами —NH2 называют ди-, три- и полиаминами: этилендиамин H2NCH2CH2NH2, гексаметилен диамин H2N(CH2)6NH2.

  Простейшие А. — газы с аммиачным запахом, высшие — жидкости или твёрдые вещества. Простейшие А. найдены в продуктах жизнедеятельности растений; триметиламин (CH3)3N содержится в сахарной мелассе и в сельдяном рассоле, которому придаёт его характерный неприятный запах. Широко распространены в природе более сложные А.: алкалоиды, аминокислоты, амины биогенные и др. Алифатические А. обычно получают алкилированием NH3; ароматические — восстановлением нитросоединений.

  Подобно аммиаку, А. — основания (ароматические А. с боковой NH2-группой — очень слабые основания). С кислотами А. образуют соли замещенного аммония, например: C2H5NH2+HCI = [C2H5NH3]+Cl. С алкилгалогенидами третичные А. дают соли четырёхзамещённого аммония: R3N + R¢CI = [R3NR¢]+CI-. Большое значение имеет реакция А. с азотистой кислотой. Первичные ароматические А. образуют с ней диазосоединения, имеющие широкое применение в лабораторном и промышленном синтезе. Первичные алифатические А. превращаются HNO2 в спирты, например C2H5NH2 + HNO2 =C2H5OH + N2 + H2O; вторичные — дают нитрозамины: (C2H5)2NH + HNO2 = H2O + (C2H5)2NNO; третичные А. с HNO2 не реагируют. Этой реакцией пользуются для распознавания первичных, вторичных и третичных А.

  В промышленности А. широко используют для производства красителей и лекарственных веществ, полиамидов, из которых изготовляют синтетическое волокно (капрон, найлон) и т. д.

  Синтез ароматических А. впервые осуществлен в 1842 Н. Н. Зининым. В 1849 Ш. Вюрц открыл алифатические А.

  Лит.: Краткая химическая энциклопедия, т. 1, М., 1961, с. 195.


Перейти на страницу:
Изменить размер шрифта: