Нам также известно, что перемещения генов в скрещиваниях соответствуют перемещениям хромосом в процессе деления клеток. Однако глубоко ошибется тот, кто подумает, что для каждого гена есть отдельная хромосома. Именно такое заключение можно сделать из задач и примеров, которые приводились. Но все они специально подобраны, чтобы иллюстрировать генетические законы.
У дрозофилы восемь хромосом, четыре пары, а генов обнаружено более пятисот. У кукурузы в десяти парах хромосом описано 112 генов, есть и еще, но их пока не удалось «привязать» к той или иной хромосоме, хотя свое место они имеют. У рыбки гуппи 48 хромосом. Генов тут описано примерно столько же, но более тридцати находятся в половых хромосомах, то есть в одной-единственной паре.
Уже, вероятно, ясно, что независимое распределение генов должно наблюдаться не всегда, что многие гены должны быть сцепленными, так как они локализованы в одной хромосоме. Честь открытия групп сцепления принадлежит Бетсону, о котором уже много говорилось. Но окончательно теория была разработана лабораторией Моргана.
В хромосоме гены расположены вовсе не как попало, не навалом лежат, а выстроились в рядок, в цепочку, нанизаны точно бусы на нитке. Мало того, это линейное расположение генов позволяет точно установить не только порядок — кто за кем, но и расстояния между генами. А зная порядок расположения и расстояния, можно создать чертеж хромосомы с «нанизанными» на нее бусами-генами. Такой чертеж называется хромосомной картой.
Наиболее подробные хромосомные карты составлены для дрозофилы, кукурузы, курицы, кролика, мыши, рыбки гуппи. А в последние годы очень тщательно работают над картой мельчайших организмов — вирусов и бактерии кишечной палочки. Именно эти исследования ведут к анализу тонкой структуры гена[5].
КУРЧАВОПЕРОСТЬ, РОЗОВИДНЫЙ ГРЕБЕНЬ И БЕЛАЯ
ОКРАСКА
Чтобы не отвлекаться от примеров животноводческих, воспользуемся опытами профессора Ф. Хатта (США), поставленными с учебными целями. Хатт на практике показывал студентам, что такое сцепление генов.
Опыт проводился на курах. В первом варианте в качестве матерей использовались гетерозиготы по двум генам: курчавоперости и розовидному гребню. Отцом был петух, несущий два рецессива. Сорок шесть цыплят, полученных от этого скрещивания, составили четыре группы:
курчавоперые с розовидным гребнем — 13
курчавоперые с простым гребнем — 9
нормально оперенные с розовидным гребнем — 11
нормально оперенные с простым гребнем — 13
Легко подсчитать, что при отсутствии сцепления соотношение было бы 1 : 1 : 1 : 1, то есть в каждой из групп оказалось бы по 11,5 потомка. Полученные результаты 13 : 9 : 11 : 13 очень близки к ожидаемым. Таким образом, между генами курчавоперости и розовидного гребня сцепления нет.
Во втором варианте опыта были использованы гены курчавоперости и доминантной белой окраски, свойственной леггорнам. Отцом был петух, рецессивный по обоим признакам — с нормальным оперением и не белый. В первом поколении получились гетерозиготы по двум доминантам. Естественно, внешне они были курчавоперыми белыми. Кур из первого поколения Хатт скрещивал с петухом-родителем.
В результате, как и в первом варианте опыта, получились цыплята четырех типов. Однако численные соотношения между ними были уже иными:
курчавоперые белые — 13
курчавоперые окрашенные — 2
нормально оперенные белые — 4
нормально оперенные окрашенные — 12
В случае независимого распределения можно было бы ожидать в каждой из групп по 8,25 потомка. Как ни малы числа в этом учебном скрещивании, все же ясно, что ожидаемого соотношения 1 : 1 : 1 : 1 не получилось. Доминантный ген курчавоперости имеет явную склонность наследоваться вместе с доминантным геном белой окраски, в то время как нормальное оперение связано с геном окрашенности.
Гены курчавоперости и доминантной белой окраски локализованы в одной хромосоме.
Тут кое-кто из читателей может возмутиться. Как так? В одной хромосоме — так пусть и наследуются вместе: курчавоперые всегда белые, нормально оперенные — окрашенные. Откуда же взялись курчавоперые окрашенные и нормально оперенные белые? Их немного, однако, как-никак — 18,2 процента!
Появление курчавоперых окрашенных и нормально оперенных белых объясняется явлением перекреста (кроссинговера). Уже говорилось: в процессе клеточных делений хромосомы скручиваются и могут при этом обмениваться участками. Вот на такие-то обменные участки и попали гены в случаях возникновения «незаконных» комбинаций.

Схема кроссинговера.
Чем дальше один ген расположен от другого, тем больше шансов, что между ними произойдет перекрест. Почти полные сцепления обнаруживают гены, которые расположены на хромосоме рядышком, и тем больше будет потомков-перекрестников, чем дальше один ген от другого. На это явление обратили внимание в лаборатории Моргана. Выяснили также и то, что число перекрестов между парой генов в разных опытах одинаково. А раз так — именно этим числом можно выражать на хромосомных картах расстояние между генами.
В нашем примере расстояние между генами курчавоперости и белой доминантной окраски равно 18,2 единицы перекреста.
Вот мы и нанесли на хромосомную карту курицы два первых гена.
Если в дальнейшем обнаружим третий ген из той же хромосомы, дающий с курчавоперостью перекрест, допустим, в 10 процентов случаев, то сможем предположить, что этот ген расположен на хромосоме в одной из двух точек: либо в 28,2 единицы перекреста от гена доминантной белой окраски, либо — в 8,2. Чтобы точно установить, где локализован ген, нужно поставить скрещивание с его участием и участием гена доминантной белой окраски.
Тогда мы сможем указать место расположения гена на хромосомной карте.
Хромосомные карты важны не только для теории, но и для селекционной практики.
Планируя скрещивания, селекционер может заранее представить себе, какое количество потомков ему следует получить, чтобы наверняка отобрать тех, у которых произошел перекрест между генами.
Глава 7. ВЕС, РАЗМЕРЫ, УДОИ
ГЕНЫ, ПРИЗНАКИ И УСЛОВИЯ
Цвет шкурки у норки и кролика, курчавость или прямоволосость, «рубашка» и форма гребня у кур — все эти признаки зависят от одного, реже двух или трех генов. Однако уже и на этих признаках можно заметить, что совместное действие двух генов часто даст эффект неожиданный. Вспомните хотя бы пример с гребнями кур и окраской у норок. Следовательно, представление, что каждому признаку соответствует ген, неверно.
Между тем некоторые генетики и селекционеры в начале нашего века искали гены жирномолочности и удойности у коров и гены размеров яиц у кур.
Теперь известно, что большинство из хозяйственно важных признаков находятся под контролем многих генов, практически — всего генотипа. Отличительная особенность таких признаков — они различаются не качеством (красная или белая «рубашка», длинный или короткий шерстный покров), а количеством: для того чтобы их определить, нужно измерить или же взвесить. Это сильно осложняет работу селекционера.
На количественные признаки значительное влияние оказывают условия содержания. Удои можно поднять и за счет правильно поставленного подбора генетически более молочных животных, и за счет улучшения кормов. В недавние времена генетика как наука отрицалась. Нередко в каком-либо хозяйстве ставили группу животных в особые условия, коров кормили питательнейшими концентратами, иногда отходами кондитерского производства и получали высокие удои или повышенную жирномолочность. Тогда объявляли о создании новой породы. Но молоко и молочный жир на отходах кондитерского производства получались сверхдорогими. Когда этих животных — тоже сверхдорогих — продавали в обычный совхоз, где они получали сено, силос, а порой и солому, от их рекордных да и вообще от повышенных удоев не оставалось и следа.
5
Согласно современным представлениям, хромосома — длинная полимерная цепочка, в состав которой входит ДНК (дезоксирибонуклеиновая кислота) — вещество, ответственное за передачу наследственной информации. В этой книге, посвященной приложению генетики к животноводству, нет возможности подробно останавливаться на сложных теоретических проблемах. Интересующиеся могут прочитать «Мы и ее величество ДНК» Ф. Полканова («Детская литература», 1968) и «Арифметика наследственности» В. Сойфера («Детская литература», 1970).