Лит.: Аллен В. Д., Регистрация нейтронов, пер. с англ., М., 1962; Власов Н. А., Нейтроны, 2 изд., М., 1971.

  Б. Г. Ерозолимский, Ю. А. Мостовой.

Нейтронные звёзды

Нейтро'нные звёзды, одна из возможных конечных стадий эволюции звёзд большой массы; вещество нейтронной звезды состоит из нейтронов с малой примесью электронов, протонов и более тяжёлых ядер. На возможность существования Н. з. впервые указал Л. Д. Ландау (1932) сразу же после открытия нейтрона (Дж. Чедвик , 1932). В 1934 американские астрономы У. Бааде и Ф. Цвикки предположили, что Н. з. могут образовываться при вспышках сверхновых звёзд . Из теории эволюции звёзд следует, что у массивных звёзд на стадии почти полного «выгорания» ядерного горючего в их центральной области может произойти катастрофически быстрое гравитационное сжатие — гравитационный коллапс (см. Коллапс гравитационный ). При коллапсе плотность вещества возрастает настолько, что достигается состояние, когда нейтроны становятся устойчивее протонов. В этих условиях происходит превращение протонов и стабильных атомных ядер в нейтроны и атомные ядра с избытком нейтронов (нейтронизация вещества). Для такого процесса необходимы плотности r ³ 1010 г/см3 . При плотностях r ³ 1012 г/см3 и температурах Т £ 1010 К, характерных для Н. з., вещество представляет собой вырожденный нейтронный газ (см. Вырожденный газ ). Механическое равновесие Н. з. связано с компенсацией сил тяготения давлением вырожденного газа нейтронов. Для равновесного устойчивого состояния Н. з. характерны следующие параметры (в среднем): масса

Большая Советская Энциклопедия (НЕ) i-images-115965336.png
 ~ 2×1033 г , т. е. равна массе Солнца
Большая Советская Энциклопедия (НЕ) i-images-101470222.png
, радиус R ~ 2×106 см = 20 км (
Большая Советская Энциклопедия (НЕ) i-images-162927623.png
= 7×1010 см ), плотность r ~ 2×1014 г/см 3 (
Большая Советская Энциклопедия (НЕ) i-images-137332827.png
= 1,4 г/см 3 ); давление р ~ 1033 —1034 дин/см 2 ; минимальный период вращения 10-3 сек. Магнитное поле Н. з. достигает ~ 1012 гс (среднее магнитное поле Солнца ~ 1 гс ). Средняя плотность Н. з. близка к ядерной плотности вещества или даже превосходит её, поэтому строение и свойства Н. з. обусловлены в значительной мере ядерными силами . Кроме того, для Н. з. характерна большая величина гравитационной энергии связи (~ 1053 эрг ), что приводит к появлению существенных поправок к ньютоновской теории тяготения, следующих из общей теории относительности (см. Тяготение ). Учёт этих двух факторов имеет принципиальное значение при расчёте внутреннего строения Н. з. Из расчётов следует, что теоретически ожидаемая масса Н. з. ЖЛ заключена в пределах 0,05
Большая Советская Энциклопедия (НЕ) i-images-109586345.png
, где
Большая Советская Энциклопедия (НЕ) i-images-139100048.png
, причём разброс вычисленных значений  обусловлен трудностями в учёте действия ядерных сил. Большинство существующих теорий связывает образование Н. з. со вспышками сверхновых звёзд, так как гравитационный коллапс звезды при определённых условиях сопровождается мощным взрывом, выбрасывающим в пространство внешние слои звезды. Н. з. были открыты в 1967 по пульсации их радиоизлучения (эти звёзды назвали пульсарами ), причём ряд пульсаров определенно связан с остатками сверхновых (в частности, пульсар PSR 0532 в Крабовидной туманности ).

  Лит.: Дайсон Ф., Тер Хаар Д., Нейтронные звёзды и пульсары, пер, с англ., М., 1973; Тейлер Р., Строение и эволюция звёзд, пер. с англ., М., 1973; Зельдович Я. Б., Новиков И. Д., Теория тяготения и эволюция звёзд, М., 1971.

  В. С. Имшенник.

Нейтронные источники

Нейтро'нные исто'чники, источники нейтронных пучков. Применяются в ядерно-физических исследованиях и в практических приложениях (см., например, Нейтронный каротаж , Нейтронография ). Все Н. и. характеризуются: мощностью (число нейтронов, испускаемых в 1 сек ), энергетическим и угловым распределением, поляризацией нейтронов и режимом испускания (непрерывным или импульсным). В первых Н. и. для получения нейтронов использовались ядерные реакции (a, n) на ядрах 7 Be или 10 B, а также фоторасщепление дейтрона или ядра Be, т. е. реакция (g, n). В первом случае Н. и. представляет собой равномерную механическую смесь порошков 7 Be и радиоактивного изотопа, испускающего a-частицы (Ra, Po, Pu и др.), запаянную в ампулу. Соотношение количеств Be и, например, Ra ~ 1 /5 (по весу). Их мощность определяется допустимым количеством a-активного препарата. Обычно активность £ 10 кюри, что соответствует испусканию ~ 107 —108 нейтронов в 1 сек (см. табл.). Н. и. со смесью Ra + Be и Am + Be являются одновременно источниками интенсивного g-излучения (104 —105 g-квантов на 1 нейтрон). Н. и. со смесью Po + Be и Pu + Be испускают только 1 g-квант на 1 нейтрон.

  В случае фотонейтронного ампульного источника ампула содержит полый цилиндр или шар из Be или с тяжёлой водой D2 O, внутри которого размещается источник g-излучения. Энергия g-квантов должна быть выше пороговой энергии фоторасщепления ядер D или Be (см. Фотоядерные реакции ). Недостаток такого Н. и. — интенсивное g-излучение; применяется в тех случаях, когда нужно простыми средствами получить моноэнергетические нейтроны. В ампульных Н. и. используется также спонтанное деление тяжёлых ядер (см. Ядра атомного деление ).

  После появления ускорителей заряженных частиц для получения нейтронов стали использоваться реакции (р, n) и (d, n) на лёгких ядрах, а также реакции (d, pn). В специальных ускорительных трубках протоны и дейтроны ускоряются в электрическом поле, создаваемом напряжением ~ 105 —107 в. Такие нейтронные генераторы разнообразны по размерам и характеристикам (см. рис. ). Некоторые из них размещаются на площади 50—100 м2 и обладают мощностью — 1012 —1013 нейтронов в 1 сек (энергию можно варьировать от 105 до 107 эв ). Существуют и миниатюрные ускорительные трубки (диаметры 25—30 мм ), испускающие 107 —108 нейтронов в 1 сек, которые используются в нейтронном каротаже.

  Для получения нейтронов с энергиями 2—15 Мэв наиболее употребительны реакции D (d, n)3 He и T (d, n)4 He. Мишенью служит гидрид металла (обычно Zr или Ti) с дейтерием или тритием. В реакции D + d значительный выход нейтронов наблюдается уже при энергии дейтронов ~ 50 кэв. Энергия нейтронов при этом ~ 2 Мэв и растет с ростом энергии протонов. Для нейтронов с энергией 13—20 Мэв предпочтительнее реакция Т + d, дающая больший выход нейтронов. Например, при энергии дейтронов 200 кэв из толстой тритиево-циркониевой мишени вылетают нейтроны с энергией ~ 14 Мэв в количестве 108 в 1 сек на 1 мкк дейтронов.


Перейти на страницу:
Изменить размер шрифта: