От ми й з’ясували суть цього розділу. Але лишилося розглянути деякі складні моменти та приховані припущення. Про перший складний момент я вже побіжно згадував. Якими б незалежними і вільними не були гени у своїй мандрівці крізь покоління, вони аж ніяк не є вільними та незалежними агентами контролю ембріонального розвитку. Вони заплутано і вкрай непросто співпрацюють та взаємодіють не лише між собою, але й зі своїм зовнішнім середовищем. Вирази на зразок «ген довгих ніг» або «ген альтруїстичної поведінки» є зручними фігурами мови, але важливо пам’ятати, що вони означають. Не існує такого гена, що сам-один створює ногу, довгу чи коротку. Створення ноги є кооперативним підприємством, де задіяно багато генів. Впливи зовнішнього середовища також необхідні: зрештою, ноги створюються з їжі! Проте цілком може виявитися один такий ген, що за інших однакових умов здатен зробити ноги довшими, ніж вони були би під впливом його алеля.
Для аналогії візьмемо вплив добрива, наприклад, селітри, на ріст пшениці. Всі знають, що завдяки селітрі пшениця росте краще, ніж без неї. Але ніхто не наважиться стверджувати, що селітра самотужки спроможна створити пшеницю. Вочевидь, необхідні також насіння, ґрунт, сонце, вода та різноманітні мінерали. Та навіть якщо всі ці фактори незмінні (хай із варіаціями в певних межах), додавання селітри покращує ріст пшениці. Те саме бачимо, коли розглянемо вплив певних генів на розвиток ембріона. Ембріональний розвиток контролюється настільки складною мережею відносин, що краще не ламати над ним голову. І жоден фактор генетики чи середовища не можна вважати єдиною «причиною» розвитку будь-якої частини тіла немовляти. Всі ці частини мають майже нескінченну кількість першопричин. Але відмінності між немовлятами, наприклад, у довжині ніг, можна легко віднести до однієї чи декількох простих попередніх відмінностей в умовах середовища чи в генах. Саме відмінності мають значення в конкурентній боротьбі за виживання, а для еволюції мають значення генетично контрольовані відмінності.
Для гена саме алелі є його найзапеклішими конкурентами, а інші гени є лише частиною середовища, що аналогічна до температури, їжі, хижаків або партнерів. Вплив гена залежить від його середовища, а в нього залучені інші гени. Іноді ген виявляє свій певний вплив, бо поруч саме цей ген, і абсолютно інакше реагуватиме, якщо існує інший набір супутніх генів. Весь набір генів в організмі створює певний генетичний клімат або тло, що змінює і впливає на результати дії будь-якого конкретного гена.
Виглядає на те, що перед нами постає парадокс. Якщо створення немовляти є аж таким складним кооперативним підприємством, де кожен ген потребує кілька тисяч супутніх генів для виконання свого завдання, яким чином це узгоджується з моїм уявленням неподільних генів, що, наче безсмертні сарни, перестрибують з організму в організм крізь віки: вільних, непідвладних і користолюбних чинників життя? Невже так уявляти було дурницею? Аж ніяк. Можливо, я й зайшов трохи задалеко, але жодних дурниць не говорив і ніякого парадоксу насправді не існує. Це можна підтвердити за допомогою іншої аналогії.
Один весляр самотужки не здатен виграти змагання з веслування між Оксфордом і Кембриджем. Для цього він потребує вісім колег. Кожен із них має свою спеціалізацію і завжди сидить у конкретній частині човна — на носі, кормі чи посередині. Веслування — справа колективна, але деякі спортсмени можуть бути кращими за інших. Уявімо, що тренер має набрати ідеальну команду з багатьох кандидатів, деякі з яких спеціалізуються на носовій позиції, інші — на кормовій тощо. І він відбиратиме так: кожного дня зводитиме разом три нові команди, що пробують свої сили, довільно перетасовуючи кандидатів на кожну позицію, та наказуватиме цим трьом командам змагатися одна з одною. Через кілька тижнів він з’ясує, що до команд-переможців дуже часто потрапляють ті самі спортсмени. Отже, він має справу з чудовими веслярами. Інші кандидати щоразу опинятимуться у повільніших командах, і їм зрештою відмовлять. Але навіть найкращий весляр може виявитися членом повільної команди або через низький рівень інших, або через несприятливі обставини — скажімо, сильний зустрічний вітер. Найкращі спортсмени опиняються в човні-переможці таки не завжди.
Веслярі — це гени. Конкуренти за кожну позицію в човні — це алелі, потенційно здатні посісти те саме місце уздовж хромосоми. Веслування легко зіставляється зі створенням організму, здатного вижити. А вітер — це зовнішнє середовище. А от велика кількість альтернативних кандидатів — генофонд. Коли мова йде про виживання певного організму, всі його гени перебувають в одному човні. Багато хороших генів потрапляють до поганого товариства, згодом з’ясувавши, що ділять організм зі смертельним геном, що руйнує цей організм іще в дитинстві. Так хороший ген буде знищений разом із рештою. Але йдеться лише про один організм, а репліки того самого хорошого гена живуть також в інших організмах, де смертельного гена нема. Відтак багато копій хороших генів зникають через дію руйнівних генів, інші гинуть через прикрі несподіванки, наприклад, в організм, де вони перебувають, влучає блискавка. Але несподіванки, щасливі чи нещасливі, стаються випадково, а ген, що постійно опиняється на боці переможених, не лише нещасливий — це таки поганий ген.
Однією з властивостей хорошого весляра є талант до командної роботи, здатність пристосуватися до співробітництва з рештою команди. Цей хист може бути не менш важливим за сильні м’язи. Як ми пересвідчилися з метеликами, природний добір може несвідомо «редагувати» генний комплекс завдяки інверсії та іншим значним рухам ділянок хромосоми, таким чином зводячи гени, що чудово співпрацюють разом, у щільно сполучувані групи. Та існує також інше рішення для того, аби гени, фізично не пов’язані між собою жодним чином, добирати за взаємною сумісністю. Якщо ген добре співпрацює з більшістю генів, що частіше трапляються в подальших організмах, тобто рештою генофонду, він матиме перевагу.
Наприклад, для ефективного хижака бажано мати певні характеристики, до яких належать гострі різці, пристосований для перетравлення м’яса кишківник тощо. А от ефективний травоїдний потребує пласких жувальних зубів і значно довшого кишківника з іншою хімією перетравлення. В генофонді травоїдних будь-який новий ген, що приніс би своїм носіям гострі м’ясоїдні зуби, не був би особливо успішним. І не лише тому, що поїдання м’яса є загалом поганою ідеєю, а через те, що не можна ефективно харчуватися м’ясом, не маючи також належного кишківника та всіх інших властивостей хижаків. Гени гострих м’ясоїдних зубів аж ніяк не є поганими. Вони недоречні лише для генофонду, де домінують гени травоїдного способу життя.
Це напрочуд делікатна і складна ідея. Вона складна тому, що «середовище» гена переважно складається з інших генів, кожен з яких добирається з огляду на здатність до співпраці з його середовищем, що складається з інших генів. Використаємо аналогію, спроможну розтлумачити цей важливий момент, що береться не з повсякденного досвіду. Вона з людської «теорії гри», представленої у 5-му розділі, де йдеться про агресивне суперництво між деякими тваринами. Тому я відсуну розгляд цього моменту аж до потрібного розділу і натомість вертаюся до головної думки саме цього розділу. Вона в тому, що основною одиницею природного добору краще за все вважати не вид, популяцію чи індивід, а маленьку одиницю генетичного матеріалу, що її зручно називати геном. Наріжним каменем цього аргументу, про що вже йшла мова, було припущення про його потенційне безсмертя, а от індивіди і решта вищих одиниць є минущими. Це припущення спирається на дві підвалини: факт статевого розмноження і кросинговеру, а ще смертності індивідів. Вони є безсумнівними. Однак варто поставити запитання, чому вони безсумнівні. Чому ми й більшість інших машин для виживання практикують статеве розмноження? Чому наші хромосоми підпадають під кросинговер? Зрештою, чому ми не живемо вічно?