Изгиб

Изги'б в сопротивлении материалов, вид деформации, характеризующийся искривлением (изменением кривизны) оси или срединной поверхности деформируемого объекта (бруса, балки, плиты, оболочки и др.) под действием внешних сил или температуры. Применительно к прямому брусу различают И.: простой, или плоский, при котором внешние силы лежат в одной из главных плоскостей бруса (т. е. плоскостей, проходящих через его ось и главные оси инерции поперечного сечения) (см. Моменты инерции ); сложный, вызываемый силами, расположенными в разных плоскостях; косой, являющийся частным случаем сложного И. (см. Косой изгиб ). В зависимости от действующих в поперечном сечении бруса силовых факторов (рис. 1 , а, б) И. называется чистым (при наличии только изгибающих моментов) и поперечным (при наличии также и поперечных сил). В инженерной практике рассматривается также особый случай И. — продольный И. (рис. 1 , в), характеризующийся выпучиванием стержня под действием продольных сжимающих сил (см. Продольный изгиб ). Одновременное действие сил, направленных по оси стержня и перпендикулярно к ней, вызывает продольно-поперечный И. (рис. 1 , г).

  Приближённый расчёт прямого бруса на действие И. в упругой стадии производится в предположении, что поперечные сечения бруса, плоские до И., остаются плоскими и после него (гипотеза плоских сечений); полагают также, что продольные волокна бруса при И. не давят друг на друга и не стремятся оторваться одно от другого. При плоском И. в поперечных сечениях бруса возникают нормальные и касательные напряжения. Нормальные напряжения s в произвольном волокне какого-либо поперечного сечения бруса (рис. 2 ), лежащем на расстоянии y от нейтральной оси, определяются формулой

Большая Советская Энциклопедия (ИЗ) i-images-143089793.png
 где Mz — изгибающий момент в сечении, a Iz момент инерции поперечного сечения относительно нейтральной оси. Наибольшие нормальные напряжения возникают в крайних волокнах сечения
Большая Советская Энциклопедия (ИЗ) i-images-170981157.png
 момент сопротивления поперечного сечения). Касательные напряжения t , возникающие при поперечном И., определяются по формуле Д. И. Журавского
Большая Советская Энциклопедия (ИЗ) i-images-102019501.png
 где Qy — поперечная сила в сечении, Sz статический момент относительно нейтральной оси части площади поперечного сечения, расположенной выше (или ниже) рассматриваемого волокна, b ширина сечения на уровне рассматриваемого волокна. Характер изменения изгибающих моментов и поперечных сил по длине бруса обычно изображается графиками-эпюрами, по которым определяются их расчётные значения. Под влиянием И. ось бруса искривляется, ее кривизна определяется выражением
Большая Советская Энциклопедия (ИЗ) i-images-113143614.png
 где r — радиус кривизны оси изогнутого бруса в рассматриваемом сечении; Е — модуль продольной упругости материала бруса. В случаях малых деформаций кривизна приближённо выражается второй производной от прогиба V , а поэтому между координатами изогнутой оси и изгибающим моментом существует дифференциальная зависимость
Большая Советская Энциклопедия (ИЗ) i-images-182093045.png
 называемая дифференциальным уравнением оси изогнутого бруса. Решением этого уравнения определяется упругая линия балки (бруса).

  Расчёт бруса на И. с учётом пластических деформаций приближённо производится в предположении, что при возрастании нагрузки (изгибающего момента) первоначально в крайних точках (волокнах), а затем и во всём поперечном сечении возникают пластические деформации. Распределение напряжений в предельном состоянии имеет вид двух прямоугольников с ординатами, равными пределу текучести материала sт , при этом кривизна бруса неограниченно возрастает. Такое состояние в сечении называется пластическим шарниром, а соответствующий ему момент является предельным и определяется по формуле

Большая Советская Энциклопедия (ИЗ) i-images-186099718.png
 в которой S 1 и S 2 — статические моменты сжатой и растянутой частей сечения относительно нейтральной оси.

  Лит. см. при ст. Сопротивление материалов .

  Л. В. Касабьян.

Большая Советская Энциклопедия (ИЗ) i009-001-213346398.jpg

Рис. 2. Чистый изгиб прямого бруса в упругой стадии: а — элемент бруса; б — поперечное сечение; в — эпюра нормальных напряжений.

Большая Советская Энциклопедия (ИЗ) i010-001-272318748.jpg

Рис. 1. Изгиб бруса: а — чистый: б — поперечный; в — продольный; г — продольно-поперечный.

Изгибание

Изгиба'ние (математическое), деформация поверхности, при которой длина каждой дуги любой линии, проведённой на этой поверхности, остаётся неизменной. Наглядный пример И. — свёртывание листа бумаги в цилиндр или конус (при условии, что бумага нерастяжима; поэтому длина каждой дуги любой линии, проведённой на бумаге, остаётся неизменной). Напротив, раздувание шарика, изготовленного из тонкой резиновой плёнки, представляет собой пример деформации, которая не будет И.

  И. поверхностей изучается в дифференциальной геометрии . Одна из теорем этой области — теорема Гаусса: при И. поверхности произведение её главных кривизн (полная кривизна) в каждой точке остаётся неизменным. Из этой теоремы следует, что никакой кусок сферы при помощи И. нельзя превратить в кусок сферы другого радиуса или придать ему плоскую форму. В современной дифференциальной геометрии особенно важное место занимают исследования возможности или невозможности И. различных поверхностей. Доказано, что каждая замкнутая выпуклая поверхность (например, целая сфера, целый эллипсоид) не может изгибаться; если же из такой поверхности вырезать сколь угодно малый кусок, то оставшаяся часть будет допускать И. Доказательство получено благодаря работам немецкого математика С. Кон-Фоссена и советских математиков А. Д. Александрова и А. В. Погорелова. Исследование И. поверхности имеет важное значение для теории тонких оболочек в механике.

  Лит.: Кон-Фоссен С. Э., Изгибаемость поверхностей в целом, «Успехи математических наук», 1936, в. 1; Ефимов Н. В., Качественные вопросы теории деформаций поверхностей, там же, 1948, т. 3, в. 2; Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Погорелов А. В., Изгибание выпуклых поверхностей, М. — Л., 1951.


Перейти на страницу:
Изменить размер шрифта: