Chapter 8. A Plan for Spam

I think it's possible to stop spam, and that content-based filters are the way to do it. The Achilles heel of the spammers is their message. They can circumvent any other barrier you set up. They have so far, at least. But they have to deliver their message, whatever it is. If we can write software that recognizes their messages, there is no way they can get around that.

To the recipient, spam is easily recognizable. If you hired someone to read your mail and discard the spam, they would have little trouble doing it. How much do we have to do, short of AI, to automate this process?

I think we will be able to solve the problem with fairly simple algorithms. In fact, I've found that you can filter present-day spam acceptably well using nothing more than a Bayesian combination of the spam probabilities of individual words. Using a slightly tweaked (as described below) Bayesian filter, we now miss less than 5 per 1000 spams, with 0 false positives.

The statistical approach is not usually the first one people try when they write spam filters. Most hackers' first instinct is to try to write software that recognizes individual properties of spam. You look at spams and you think, the gall of these guys to try sending me mail that begins "Dear Friend" or has a subject line that's all uppercase and ends in eight exclamation points. I can filter out that stuff with about one line of code.

And so you do, and in the beginning it works. A few simple rules will take a big bite out of your incoming spam. Merely looking for the word click will catch 79.7% of the emails in my spam corpus, with only 1.2% false positives.

I spent about six months writing software that looked for individual spam features before I tried the statistical approach. What I found was that recognizing that last few percent of spams got very hard, and that as I made the filters stricter I got more false positives.

False positives are innocent emails that get mistakenly identified as spams. For most users, missing legitimate email is an order of magnitude worse than receiving spam, so a filter that yields false positives is like an acne cure that carries a risk of death to the patient.

The more spam a user gets, the less likely he'll be to notice one innocent mail sitting in his spam folder. And strangely enough, the better your spam filters get, the more dangerous false positives become, because when the filters are really good, users will be more likely to ignore everything they catch.

I don't know why I avoided trying the statistical approach for so long. I think it was because I got addicted to trying to identify spam features myself, as if I were playing some kind of competitive game with the spammers. (Nonhackers don't often realize this, but most hackers are very competitive.) When I did try statistical analysis, I found immediately that it was much cleverer than I had been. It discovered, of course, that terms like virtumundo and teens were good indicators of spam. But it also discovered that per and FL and ff0000 are good indicators of spam. In fact, ff0000 (HTML for bright red) turns out to be as good an indicator of spam as any pornographic term.

Here's a sketch of how I do statistical filtering. I start with one corpus of spam and one of non spam mail. At the moment each one has about 4000 messages in it. I scan the entire text, including headers and embedded HTML and Javascript, of each message in each corpus. I currently consider alphanumeric characters, dashes, apostrophes, and dollar signs to be part of tokens, and everything else to be a token separator. (There is probably room for improvement here.) I ignore tokens that are all digits, and I also ignore HTML comments, not even considering them as token separators.

I count the number of times each token (ignoring case, currently) occurs in each corpus. At this stage I end up with two large hash tables, one for each corpus, mapping tokens to number of occurrences.

Next I create a third hash table, this time mapping each token to the probability that an email containing it is a spam, Pspam|w which I calculate as follows:

r g = min (1, 2(good (w)/G)), rb = min (1, bad (w)/B)

Pspam|w = max(.01,min (.99, rb /( rg + rb )))

where w is the token whose probability we're calculating, good and bad are the hash tables I created in the first step, and G and B are the number of non spam and spam messages respectively.

I want to bias the probabilities slightly to avoid false positives, and by trial and error I've found that a good way to do it is to double all the numbers in good. This helps to distinguish between words that occasionally do occur in legitimate email and words that almost never do. I only consider words that occur more than five times in total (actually, because of the doubling, occurring three times in non spam mail would be enough). And then there is the question of what probability to assign to words that occur in one corpus but not the other. Again by trial and error I chose .01 and .99. There may be room for tuning here, but as the corpus grows such tuning will happen automatically anyway.

The especially observant will notice that while I consider each corpus to be a single long stream of text for purposes of counting occurrences, I use the number of emails in each, rather than their combined length, as the divisor in calculating spam probabilities. This adds another slight bias to protect against false positives.

When new mail arrives, it is scanned into tokens, and the most interesting fifteen tokens, where interesting is measured by how far their spam probability is from a neutral .5, are used to calculate the probability that the mail is spam. If w1, . . . , w15 are the fifteen most interesting tokens, you calculate the combined probability thus:

Figure 8-1.

Hackers and Painters: Big Ideas from the Computer Age hp7.jpg

One question that arises in practice is what probability to assign to a word you've never seen, i.e. one that doesn't occur in the hash table of word probabilities. I've found, again by trial and error, that .4 is a good number to use. If you've never seen a word before, it is probably fairly innocent; spam words tend to be all too familiar.

I treat mail as spam if the algorithm above gives it a probability of more than .9 of being spam. But in practice it would not matter much where I put this threshold, because few probabilities end up in the middle of the range.

One great advantage of the statistical approach is that you don't have to read so many spams. Over the past six months, I've read literally thousands of spams, and it is really kind of demoralizing. Norbert Wiener said if you compete with slaves you become a slave, and there is something similarly degrading about competing with spammers. To recognize individual spam features you have to try to get into the mind of the spammer, and frankly I want to spend as little time inside the minds of spammers as possible.

But the real advantage of the Bayesian approach, of course, is that you know what you're measuring. Feature-recognizing filters like Spam Assassin assign a spam "score" to email. The Bayesian approach assigns an actual probability. The problem with a "score" is that no one knows what it means. The user doesn't know what it means, but worse still, neither does the developer of the filter. How many points should an email get for having the word sex in it? A probability can of course be mistaken, but there is little ambiguity about what it means, or how evidence should be combined to calculate it. Based on my corpus, sex indicates a .97 probability of the containing email being a spam, whereas sexy indicates .99 probability. And Bayes's Rule, equally unambiguous, says that an email containing both words would, in the (unlikely) absence of any other evidence, have a 99.97% chance of being a spam.


Перейти на страницу:
Изменить размер шрифта: