Функция y=f(x) называется дифференцируемой при некотором значении x ее аргумента, если приращение Δf = f(x+h) - f(x) этой функции, отвечающее приращению h = (x+h) - x = Δx ее аргумента x, можно представить в виде

f(x+h) - f(x) = k(x)·h + α·h, (8)

где k(x) - коэффициент, зависящий только от x, а α - величина, стремящаяся к нулю при h, стремящемся к нулю.

Таким образом,

f(x+h)-f(x) ≈ k(x)·h,      (9)

т.е. с точностью до погрешности α·h, малой в сравнении с величиной h приращения аргумента, приращение f(x+h) - f(x) дифференцируемой в точке x функции можно заменить величиной k(x)·h, линейной относительно приращения h аргумента x.

Эта приближающая линейная по h функция k(x)·h называется дифференциалом исходной функции f в точке x и обозначается символом df или, более полно, df(x).

В каждой точке x приближающая линейная функция k(x)·h, вообще говоря, своя, что отмечено зависимостью коэффициента k(x) от x.

Поделив обе части равенства (8) на h и учитывая, что величина α стремится к нулю, когда h стремится к нулю, получаем соотношение:

Энциклопедический словарь юного математика _283.jpg
,    (10)

позволяющее вычислять дифференциальный коэффициент k(x) и показывающее, что он просто-напросто совпадает со значением производной f'(x) функции f(x) в точке x.

Таким образом, если функция дифференцируема в точке x, то в этой точке существует указанный в (10) предел, т.е. в ней существует производная f'(x) и k(x) = f'(x).

ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ

(1646-1716)

Энциклопедический словарь юного математика _284.jpg

Математика не была его единственной страстью. С юных лет ему хотелось познать природу в целом, и математика должна была стать решающим средством в этом познании. Он был философом и лингвистом, историком и биологом, дипломатом и политическим деятелем, математиком и изобретателем. Научные и общественные планы Лейбница были грандиозны. Он мечтал о создании всемирной академии наук, о построении «универсальной науки». Он хотел выделить простейшие понятия, из которых по определенным правилам можно сформировать все сколь угодно сложные понятия. Лейбниц мечтал об универсальном языке, позволяющем записывать любые мысли в виде математических формул, причем логические ошибки должны проявляться в виде математических ошибок. Он думал о машине, которая выводит теоремы из аксиом, о превращении логических утверждений в арифметические (эта идея была воплощена в жизнь в нашем веке).

Но грандиозность замыслов уживалась у Лейбница с пониманием того, что может быть непосредственно осуществлено. Он не может организовать всемирную академию, но в 1700 г. организует академию в Берлине, рекомендует Петру I организовать академию в России. При организации Петербургской Академии наук в 1725 г. пользовались планами Лейбница. Он прекрасно умеет решать конкретные задачи и в математике: создает новый тип арифмометра, который не только складывает и вычитает числа, но и умножает, делит, возводит в степень и извлекает квадратные и кубические корни, решает трудные геометрические задачи. Вводит понятие определителя и закладывает основы теории определителей. И все же Лейбниц всегда стремился рассмотреть любой вопрос под самым общим углом зрения. Скажем, X. Гюйгенс замечает сохранение энергии на примере некоторых механических задач, а Лейбниц пытается преобразовать это утверждение во всеобщий закон природы, он рассматривает Вселенную в целом как вечный двигатель (предварительная формулировка закона сохранения энергии!).

Но особенно ярко проявились эти качества Лейбница, когда он, узнав о разнообразных математических и механических задачах, решенных Гюйгенсом, по совету последнего знакомится с работой Б. Паскаля о циклоиде. Он начинает понимать, что в решении этих разных задач спрятан общий, универсальный метод решения широкого круга задач и что Паскаль остановился перед решающим шагом, «будто на его глазах была пелена». Лейбниц создает дифференциальное и интегральное исчисления, которые в другом варианте были построены, но не опубликованы И. Ньютоном.

Ученый, занимавшийся разработкой универсального языка, понимает, какую роль в новом исчислении должна играть символика (см. Знаки математические). Без символики (которая сохранилась до наших дней в форме, предложенной Лейбницем) метод математического анализа не вышел бы за пределы узкого круга избранных (как это было с алгеброй до символики Виета-Декарта). Кстати, Лейбниц предложил несколько других математических знаков, например = (равенство), · (умножение). В отличие от Ньютона Лейбниц потратил много сил на передачу своего метода другим математикам, среди которых выделялись братья Якоб и Иоганн Бернулли. По его инициативе создается журнал, в котором группа математиков оттачивает методы нового математического анализа.

Смысл своей жизни Лейбниц видел в познании природы, в создании идей, помогающих раскрыть ее законы.

------------------------------------------

Обратно, если у функции f(x) в точке x есть определенная равенством (5) производная, то

Энциклопедический словарь юного математика _285.jpg
,

где поправка α стремится к нулю, когда h стремится к нулю. Умножая это равенство на h, получаем

f(x+h) - f(x) = f'(x)·h + α·h,      (11)

и значит, функция дифференцируема в точке x.

Итак, мы убедились, что функция имеет дифференциал df = k(x)·h в том, и только в том, случае, когда она имеет производную f'(x), причем df = f'(x)·h. Но дифференциал как линейная по h функция k(x)·h вполне определяется коэффициентом k(x) = f'(x), поэтому отыскание дифференциала функции вполне равносильно отысканию ее производной. Вот почему обе эти операции часто называют одним термином - «дифференцирование», а исчисление называют дифференциальным.

Если вместо h писать Δx, то вместо df = f'(x)·h можно записать df = f'(x)·Δx. Если взять f(x) = x, то f'(x) = 1 и dx = 1·Δx, поэтому вместо приращения Δx независимой переменной часто пишут дифференциал dx. В этих обозначениях получается красивая запись df = f'(x)·dx дифференциала функции, от которой Лейбниц и пришел к обозначению df/dx для производной f'(x), рассматривая последнюю как отношение дифференциалов функции и ее аргумента. Заметим, что обозначение f'(x) для производной было введено лишь в 1770 г. французским математиком Ж. Л. Лагранжем, а исходным было обозначение

Энциклопедический словарь юного математика _286.jpg
 или
Энциклопедический словарь юного математика _287.jpg

Г. Лейбница, которое во многих отношениях настолько удачно, что широко используется и по сей день.

Прежде чем показать, как дифференциал можно использовать в приближенных вычислениях, проследим его геометрическую и физическую интерпретацию.

Если в равенстве (8) вместо x написать x0, то можно считать, что на рис. 1 левой части равенства (8) отвечает отрезок BD (это приращение Δf функции или приращение ординаты кривой y=f(x)), дифференциалу df = f'(x)·Δx отвечает отрезок CD (это приращение ординаты касательной, приближающей нашу кривую в окрестности точки A), а остатку α·h соответствует отрезок BC, который тем меньше в сравнении с отрезком CD, чем меньше приращение Δx аргумента. Именно это обстоятельство отражают соотношение (11) и приближенное равенство (9), означающее, что Δf ≈ df.

На физическом языке, когда f'(x) интерпретируется как скорость в момент x, а f(x+h) - f(x) - как путь, пройденный за промежуток времени h, протекший от момента x, приближенное равенство f(x+h) - f(x) ≈ f'(x)·h означает, что за малое время h скорость мало меняется, поэтому пройденный путь приближенно можно найти, как и в (1), по формуле f'(x)·h, выражающей равномерное прямолинейное движение с постоянной скоростью f'(x).


Перейти на страницу:
Изменить размер шрифта: