элементарной функции sin x/x (называемая интегральным синусом и обозначаемая специальным символом si(x)), как можно доказать, не выражается в элементарных функциях. Таким образом, принципиальный математический вопрос о существовании первообразной у наперед заданной функции не надо смешивать с не всегда разрешимой задачей об отыскании этой первообразной среди элементарных функций. Интегрирование часто является источником введения важных и широко используемых специальных функций, которые изучены ничуть не хуже таких «школьных» функций, как x2 или sin x, хотя и не входят в список элементарных функций.
Наконец, отметим, что отыскание первообразной, даже когда она выражается в элементарных функциях, скорее напоминает искусство, чем канонический алгоритм вычислений, подобный алгоритму дифференцирования. По этой причине найденные первообразные наиболее часто встречающихся функций собраны в виде справочных таблиц неопределенных интегралов. Следующая микротаблица такого рода, очевидно, равносильна микротаблице производных соответствующих основных элементарных функций:

Мы, пока говорили об обращении операции дифференцирования, пришли в этой связи к понятиям первообразной, неопределенного интеграла и дали первоначальное определение этих понятий.
Теперь укажем иной, куда более древний подход к интегралу, который послужил основным первоначальным источником интегрального исчисления и привел к понятию определенного интеграла или интеграла в собственном смысле этого слова. Этот подход четко прослеживается уже у древнегреческого математика и астронома Евдокса Книдского (примерно 408-355 до н.э.) и Архимеда, т.е. он возник задолго до появления дифференциального исчисления и операции дифференцирования.

Вопрос, который рассматривали Евдокс и Архимед, создав при его решении «метод исчерпывания», предвосхитивший понятие интеграла – это вопрос о вычислении площади криволинейной фигуры. Ниже мы рассмотрим этот вопрос, а пока поставим, вслед за И. Ньютоном, следующую задачу: по известной в любой момент t из промежутка времени a ≤ t ≤ b скорости v(t) тела найти величину перемещения тела за этот промежуток времени.
Если бы был известен закон движения, т.е. зависимость координаты тела от времени, то ответ, очевидно, выражался бы разностью s(b) - s(a). Более того, если бы мы знали какую-либо первообразную
Будем рассуждать следующим образом.
Если промежуток [a;b] отдельными моментами t0,t1,...,tn, такими, что a = t0<t1<...<tn = b, разбить на очень мелкие временные промежутки [ti-1;ti], i = 1,2,...,n, то на каждом из этих коротких промежутков скорость v(t) тела не успевает заметно измениться. Фиксировав произвольно момент τi ∈ [ti-1;ti], можно таким образом приближенно считать, что на промежутке времени [ti-1;ti] движение происходит с постоянной скоростью ν(τi). В таком случае для величины пути, пройденного за промежуток времени [ti-1;ti], получаем приближенное значение ν(τi)·Δti, где Δti = ti - ti-1. Складывая эти величины, получаем приближенное значение
v(τ1)·Δt1 + v(τ2)·Δt2 + ...+v(τn)·Δtn (4)
для всего перемещения на промежутке [a;b].
Найденное приближенное значение тем точнее, чем более мелкое разбиение промежутка [a;b] мы произведем, т.е. чем меньше будет величина Δ наибольшего из промежутков [ti-1;ti], на которые разбит промежуток [a;b].
Значит, искомая нами величина перемещения есть предел
сумм вида (4), когда величина Δ стремится к нулю.
Суммы специального вида (4) называются интегральными суммами для функции v(t) на промежутке [a;b], а их предел (5), получаемый при неограниченном мельчании разбиений, называется интегралом (или определенным интегралом) от функции v(t) на промежутке [a;b]. Интеграл обозначается символом
в котором числа a,b называются пределами интегрирования, причем a - нижним, a b - верхним пределом интегрирования; функция v(t), стоящая под знаком ∫ интеграла, называется подынтегральной функцией; v(t)dt - подынтегральным выражением; t - переменной интегрирования.
Итак, по определению,
Значит, искомая величина перемещения тела за временной промежуток [a;b] при известной скорости v(t) движения выражается интегралом (6) от функции v(t) по промежутку [a;b].
Сопоставляя этот результат с тем, который на языке первообразной был указан в начале рассмотрения этого примера, приходим к знаменитому соотношению:
если v(t) = s'(t). Равенство (7) называется формулой Ньютона-Лейбница. В левой его части стоит понимаемый как предел (6) интеграл, а в правой – разность значений (в концах b и a промежутка интегрирования) функции s(t), первообразной подынтегральной функции v(t). Таким образом, формула Ньютона-Лейбница связывает интеграл (6) и первообразную. Этой формулой можно, следовательно, пользоваться в двух противоположных направлениях: вычислять интеграл, найдя первообразную, или получать приращение первообразной, найдя из соотношения (6) интеграл. Мы увидим ниже, что оба эти направления использования формулы Ньютона-Лейбница весьма важны.
Интеграл (6) и формула (7) в принципе решают поставленную в нашем примере задачу. Так, если v(t) = gt (как это имеет место в случае свободного падения, начинающегося из состояния покоя, т.е. с v(0) = 0), то, найдя первообразную s(t) = gt2/2 + C функции v(t) = g·t по формуле (7), получаем величину
перемещения за время, прошедшее от момента a до момента b.
На основе разобранной только что физической задачи, приведшей нас к интегралу и формуле Ньютона-Лейбница, обобщая сделанные наблюдения, можно теперь сказать, что если на некотором промежутке a ≤ x ≤ b задана функция f(x), то, разбивая промежуток [a;b] точками a = x0 < x1 <...<xn = b, составляя интегральные суммы
f(ξ1)·Δx1 + f(ξ2)·Δx2 + ...+f(ξn)·Δxn, (4')
где ξ ∈ [xi-1; xi], Δxi = xi - xi-1, и переходя к пределу при Δ → 0, где Δ = max{Δx1, Δx2,...,Δxn}, мы получаем по определению интеграл