Вообще, если сказано, что некоторое утверждение Q является необходимым для P, то это означает, что утверждается справедливость теоремы, в которой P - условие, a Q- заключение.
Иначе говоря, каждую теорему (рис. 2)
(...)P ⇒ Q
(где многоточие выражает разъяснительную часть теоремы, P - условие, Q - заключение) можно выразить следующими способами:
1) если верно P, то верно и Q;
2) для справедливости Q достаточно, чтобы выполнялось P;
3) для справедливости P необходимо, чтобы выполнялось Q.

Рис. 2
Если для некоторой теоремы справедлива также и обратная ей теорема, то ее формулировку можно выразить по-другому, используя слова «необходимо и достаточно». Например, теорема (рис. 3)
(дан ΔABC)
и обратная ей теорема
(дан ΔABC)
- обе справедливы. Иными словами, для того чтобы треугольник был равнобедренным, необходимо, чтобы два угла этого треугольника были равными (исходная теорема); кроме того, чтобы треугольник был равнобедренным, достаточно, чтобы два угла этого треугольника были равными (обратная теорема). Это кратко записывается в виде
(дан ΔABC)
и читается словами так: для того чтобы треугольник был равнобедренным, необходимо и достаточно, чтобы два угла этого треугольника были равными.

Рис. 3
Вот еще несколько примеров необходимых и достаточных условий. 1) Для того чтобы углы были вертикальными, необходимо, чтобы они были равными. 2) Для того чтобы четырехугольник был параллелограммом, достаточно, чтобы все его углы были прямыми. 3) Для параллельности прямых a и b необходимо и достаточно, чтобы они были симметричны относительно некоторой точки. 4) Для того чтобы параллелограмм был ромбом, необходимо и достаточно, чтобы его диагонали были перпендикулярны. 5) Для того чтобы диагонали четырехугольника были перпендикулярны, достаточно, чтобы он был ромбом. 6) Для того чтобы четырехугольник ABCD был прямоугольником, необходимо, чтобы его диагонали были равны: AC=BD. 7) Для того чтобы число x0 было корнем многочлена f(x)=xn+a1xn-1+a2xn-2+...+an-1x+an, необходимо и достаточно, чтобы многочлен f(x) без остатка делился на x-x0. 8) Для того чтобы дифференцируемая на [a,b] функция f(x) достигала (рис. 4) максимума (или минимума) в некоторой внутренней точке x0 отрезка [a,b], необходимо, чтобы в этой точке производная функции обращалась в нуль: f'(x0)=0. 9) Для того чтобы система двух линейных уравнений с двумя неизвестными имела единственное решение, необходимо и достаточно, чтобы определитель этой системы был отличен от нуля. 10) Для того чтобы прямая a была перпендикулярна плоскости α, достаточно, чтобы прямая a была перпендикулярна двум непараллельным прямым, лежащим в плоскости α (рис. 5).

Рис. 4

Рис. 5
Слова «необходимо и достаточно» нередко заменяются словами: «тогда, и только тогда, когда» или «в том, и только в том, случае, если». Например, четырехугольник в том, и только в том, случае является параллелограммом, если его диагонали, пересекаясь, делятся пополам.
Вместо того чтобы сказать «достаточное условие», «необходимое условие», иногда говорят «достаточный признак», «необходимый признак». Иногда даже говорят просто «признак», считая ясным, о каком из признаков (достаточном или необходимом) идет речь. Например, теорема «для того чтобы число делилось на 9, необходимо и достаточно, чтобы сумма его цифр делилась на 9» называется признаком делимости на 9. Теоремы о накрест лежащих углах при пересечении двух прямых третьей (взаимно обратные друг другу) объединяются общим названием «признак параллельности».
НЕПРЕРЫВНЫЕ ФУНКЦИИ
Рассмотрим две функции, графики которых изображены на рис. 1 и 2. График первой функции можно нарисовать, не отрывая карандаша от бумаги. Эту функцию можно назвать непрерывной. График другой функции так нарисовать нельзя. Он состоит из двух непрерывных кусков, а в точке x0 имеет разрыв, и функцию мы назовем разрывной.

Рис. 1

Рис. 2
Такое наглядное определение непрерывности никак не может устроить математику, поскольку содержит совершенно нематематические понятия «карандаш» и «бумага». Точное математическое определение непрерывности дается на основе понятия предела и состоит в следующем.
Пусть функция y=f(x) определена на отрезке [a,b] и x0 - некоторая точка этого отрезка. Функция f(x) называется непрерывной в точке x0, если при стремлении x к x0 (x рассматривается только из отрезка [a,b]) значения функции стремятся к f(x0), т.е. если
Функция называется непрерывной на отрезке, если она непрерывна в каждой его точке.
Если в точке x0 равенство (1) не выполняется, функция называется разрывной в точке x0.
Как видим, математически свойство непрерывности функции на отрезке определяется через местное (локальное) свойство непрерывности в точке.
Величина Δx=x-x0 называется приращением аргумента, разность значений функции f(x)=f(x0) называется приращением функции и обозначается Δy. Очевидно, что при стремлении x к x0 приращение аргумента стремится к нулю: Δx → 0.
Перепишем равенство (1) в равносильном виде
Используя введенные обозначения, его можно переписать так:
Итак, если функция непрерывна, то при стремлении приращения аргумента к нулю приращение функции стремится к нулю. Говорят и иначе: малому приращению аргумента соответствует малое приращение функции. На рис. 3 приведен график непрерывной в точке x0 функции, приращению Δx соответствует приращение функции Δy. На рис. 4 приращению Δx соответствует такое приращение функции Δy, которое, как бы мало Δx ни было, не будет меньше половины длины отрезка AB; функция разрывна в точке x0.

Рис. 3

Рис. 4
Наше представление о непрерывной функции как о функции, график которой можно нарисовать, не отрывая карандаша от бумаги, прекрасно подтверждается свойствами непрерывных функций, которые доказываются в математическом анализе. Отметим, например, такие их свойства.
1. Если непрерывная на отрезке функция принимает на концах отрезка значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю.
2. Функция f(x), непрерывная на отрезке [a,b], принимает все промежуточные значения между значениями в концевых точках, т.е. между f(a) и f(b).
3. Если функция непрерывна на отрезке, то на этом отрезке она достигает своего наибольшего и своего наименьшего значения, т.е. если m - наименьшее, а M - наибольшее значения функции на отрезке [a,b], то найдутся на этом отрезке такие точки x1 и x2, что f(x1)=m и f(x2)=M.