Линейный крейсер

Лине'йный кре'йсер, подкласс крейсеров с мощным артиллерийским вооружением, появившийся перед 1-й мировой войной 1914—18. Было построено лишь несколько Л. к., имели водоизмещение от 20 до 42 тыс. т, вооружение — 6—9 башенных орудий калибра 280—380 мм, до 20 113-мм орудий, скорость хода 29—30 узлов (53,7—55,5 км/ч). Л. к. применялись в 1-й мировой войне, а три из оставшихся в ВМС Великобритании и во 2-й мировой войне 1939—45. После войны последний уцелевший Л. к. был сдан на слом.

Линейный оператор

Лине'йный опера'тор, обобщение понятия линейного преобразования на линейные пространства. Линейным оператором F на линейном пространстве Е называют функцию F(x), определённую для всех х Î Е, значения которой суть элементы линейного пространства E1, и обладающую свойством линейности:

  F((x + (у) = (F(x) + (F(y),

  где х и у — любые элементы из Е, a и b — числа. Если пространства Е и E1 нормированы и величина

Большая Советская Энциклопедия (ЛИ) i-images-134381359.png
 ограничена, то Л. о. F называют ограниченным, а
Большая Советская Энциклопедия (ЛИ) i-images-157344482.png
его нормой.

  Важнейшими конкретными примерами Л. о. в функциональных пространствах являются дифференциальные Л. о.

 

Большая Советская Энциклопедия (ЛИ) i-images-102011416.png

  и интегральные Л. о.

 

Большая Советская Энциклопедия (ЛИ) i-images-123214226.png
 

  примером Л. о. функций многих переменных может служить Лапласа оператор. Теория Л. о. находит большое применение в различных вопросах математической физики и прикладной математики. См. также Функциональный анализ, Операторов теория, Спектральный анализ (математический), Собственные значения и собственные функции, Собственные векторы.

Линейный функционал

Лине'йный функциона'л, обобщение понятия линейной формы на линейные пространства. Линейным функционалом f на линейном нормированном пространстве Е называют числовую функцию f(x), определённую для всех х из Е и обладающую следующими свойствами:

  1) f(x) линейна, т. е. f((x + (у) = (f(x) + (f(y),

  где х и у — любые элементы из Е, a и b — числа;

  2) f(x) непрерывна.

  Непрерывность f равносильна требованию, чтобы

Большая Советская Энциклопедия (ЛИ) i-images-168361134.png
 было ограничено в Е; выражение
Большая Советская Энциклопедия (ЛИ) i-images-146221160.png
 называют нормой f и обозначают
Большая Советская Энциклопедия (ЛИ) i-images-156415506.png
.

  В пространстве С [a, b] функций a(t), непрерывных при a ( t ( b, с нормой

Большая Советская Энциклопедия (ЛИ) i-images-123299957.png
 Л. ф. являются, например, выражения:

 

Большая Советская Энциклопедия (ЛИ) i-images-176449969.png
,

  f2[((t)] = ((t), a ( t ( b.

  В гильбертовом пространстве Н Л. ф. суть скалярные произведения (l, х), где l — любой фиксированный элемент пространства Н; ими исчерпываются все Л. ф. этого пространства.

  Во многих задачах можно из общих соображений установить, что та или иная величина является Л. ф. Например, к Л. ф. приводит решение линейных дифференциальных уравнений с линейными краевыми условиями. Поэтому очень существенным является вопрос об общем аналитическом выражении Л. ф. в разных пространствах.

  Совокупность всех Л. ф. данного пространства Е превращается в линейное нормированное пространство

Большая Советская Энциклопедия (ЛИ) i-images-162776537.png
, если определить естественным образом сложение Л. ф. и умножение их на числа. Пространство
Большая Советская Энциклопедия (ЛИ) i-images-148131608.png
 называют сопряжённым к
Большая Советская Энциклопедия (ЛИ) i-images-192942662.png
; это пространство играет большую роль при изучении Е.

  С понятием Л. ф. связано понятие слабой сходимости. Последовательность {xn} элементов линейного нормированного пространства называют слабо сходящейся к элементу х, если

 

Большая Советская Энциклопедия (ЛИ) i-images-169103951.png

  для любого Л. ф. f. См. также Функциональный анализ.

Линейных знаков способ

Лине'йных зна'ков спо'соб, один из картографических способов изображения. Л. з. с. изображаются линии местности (например, водоразделы, тектонические разломы, линии связи, политико-административные границы и др.), объекты линейного протяжения, не выражающиеся в масштабе карты (например, реки и дороги и др.), граничные полосы (например, береговая зона, зональные границы почв и растительности и др.).

Линейчатая геометрия

Лине'йчатая геоме'трия, раздел геометрии, в котором рассматриваются в качестве элементов пространства прямые линии. Как известно, прямая в пространстве определяется четырьмя постоянными — коэффициентами а, b, р, q в уравнениях х = az + р, у = bz + q. Следовательно, величины а, b, р, q можно рассматривать как координаты прямой. Если эти координаты являются функциями одного, двух или трёх параметров, то соответствующие совокупности прямых образуют линейчатые поверхности и т. н. конгруэнции и комплексы прямых. Эти геометрические образы и являются объектом изучения Л. г. Примером линейчатой поверхности может служить однополостный гиперболоид, примером конгруэнции — совокупность общих касательных к двум каким-либо поверхностям, примером комплекса прямых — совокупность касательных к одной какой-либо поверхности.

  Для изучения линейчатых поверхностей, конгруэнций и комплексов прямых с единой точки зрения в Л. г. вводятся так называемые линейные однородные координаты прямой. Пусть заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда линейными однородными координатами прямой, проходящей через эти точки, называют шесть чисел, пропорциональных (или равных) числам:

  x1= x1 — x2, x2 = y1 — y2, x3 = z1 — z2, x4 = y1z2 — y2z1, x5 = x2z1 — x1z2, x6 = x1y2 — x2y1.

  Числа x1, x2, x3 являются компонентами вектора

Большая Советская Энциклопедия (ЛИ) i-images-148118259.png
, а x4, x5, x6 — компоненты момента этого вектора относительно начала координат. Легко проверить, что числа xi удовлетворяют соотношению


Перейти на страницу:
Изменить размер шрифта: