x1x4 + x2x5 + x3x6 = 0. (1)

  Таким образом, каждой прямой соответствуют шесть определяемых с точностью до постоянного множителя чисел xi, удовлетворяющих соотношению (1), и обратно, числа xi (не все равные нулю), связанные условием (1), определяют единственным образом некоторую прямую (как её координаты в указанном выше смысле). Одно однородное линейное уравнение

 

Большая Советская Энциклопедия (ЛИ) i-images-124368415.png
 (2)

  определяет линейный комплекс — совокупность прямых, заполняющих пространство так, что через каждую точку пространства проходит пучок прямых, лежащих в одной плоскости. Таким образом, каждой точке («полюсу») пространства можно поставить в соответствие плоскость («полярную плоскость»), содержащую все прямые комплекса, проходящую через эту точку. Это соответствие называют нулевой системой; оно аналогично соответствию полюсов и полярных плоскостей поверхности 2-го порядка. Если полярные плоскости всех точек пространства проходят через одну прямую (ось), то комплекс состоит из всех прямых, пересекающих ось; его называют специальным линейным комплексом. В этом случае коэффициенты уравнения (2) удовлетворяют условию

  a1a4 + a2a5 + a3a6 = 0.

  Система двух однородных линейных уравнений вида (2) определяет линейную конгруэнцию — совокупность прямых, пересекающих две данные прямые (которые могут быть и мнимыми). Три однородных линейных уравнения определяют линейчатую поверхность, являющуюся в этом случае либо однополостным гиперболоидом, либо гиперболическим параболоидом.

  Линейные однородные координаты прямой были введены Ю. Плюккером в 1846. Он же подробно изучил теорию линейного комплекса. В дальнейшем Л. г. разрабатывалась в работах Ф. Клейна и русского математика А. П. Котельникова. Дифференциальная геометрия конгруэнций, начатая Э. Куммером в 1860, получила большое развитие в трудах итальянских математиков Л. Бианки, Г. Санниа и французского математика А. Рибокура. На основе созданного в 1895 Котельниковым «винтового» исчисления советским математиком Д. Н. Зейлигером развита теория линейчатых поверхностей и конгруэнций. Проективная теория конгруэнций построена в 1927 советским математиком С. П. Финиковым.

  Лит.: Зейлигер Д. Н., Комплексная линейчатая геометрия. Поверхности и конгруэнции, Л. — М., 1934; Фиников С. П., Теория поверхностей, М. — Л., 1934; его же, Проективно-дифференциальная геометрия, М. — Л.,1937; его же, Теория конгруэнций, М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Клейн Ф., Высшая геометрия, пер. с нем., М. — Л., 1939; Zindler К., Liniengeometrie, Bd 1—2, Lpz., 1902—06.

  Э. Г. Позняк.

Линейчатая поверхность

Лине'йчатая пове'рхность, совокупность прямых, зависящая от одного параметра; Л. п. можно описать движением прямой (образующей) по некоторой линии (направляющей). Л. п. разделяются на развёртывающиеся и косые.

  Развёртывающиеся Л. п. могут быть посредством изгибания наложены на плоскость. Любая развёртывающаяся поверхность является либо цилиндром, либо конусом, либо поверхностью, состоящей из касательных к некоторой пространственной кривой (1) (рис. 1). Эту кривую называют ребром возврата развёртывающейся поверхности. Плоскость P, пересекающая ребро возврата (L), образует в сечении с поверхностью кривую ABC с точкой возврата В (см. Особые точки). Ребро возврата является особой линией развёртывающейся поверхности, вдоль которой две её полости S1 и S2 касаются друг друга. Развёртывающиеся поверхности характеризуются также тем, что касательная плоскость к ним в различных точках одной и той же образующей неизменна. Отсюда следует, что совокупность всех касательных плоскостей развёртывающейся Л. п. представляет собой однопараметрическое семейство. Иначе говоря, развёртывающаяся Л. п. является огибающей однопараметрического семейства плоскостей.

  У косой Л. п. касательные плоскости в различных точках одной и той же образующей различны. При перемещении точки касания вдоль образующей касательная плоскость вращается вокруг образующей. Полный поворот касательной плоскости, когда точка касания проходит всю образующую, равен 180°. На каждой образующей имеется такая точка, что для каждой из двух частей, на которые она делит образующую, полный поворот касательной плоскости равен 90°. Эту точку (на рис. 2 — точка О) называют центром образующей. Тангенс угла между касательными плоскостями к поверхности в центре О и какой-либо другой точке O' той же образующей пропорционален расстоянию OO'. Множитель пропорциональности называется параметром распределения Л. п. Абсолютная величина полной кривизны Л. п. достигает на данной образующей наибольшего значения в центре образующей и убывает при удалении от центра по образующей. Геометрическое место центров образующих носит название линии сжатия, или стрикционной линии. Например, у геликоида — Л. п., описываемой равномерным винтовым движением прямой вокруг некоторой оси (которую движущаяся прямая пересекает под прямым углом), — линией сжатия является ось (AB на рис. 2). Л. п. 2-го порядка — гиперболический параболоид, однополостный гиперболоид — имеют две различные системы прямолинейных образующих (из однополостных гиперболоидов сконструирована радиомачта системы В. Г. Шухова, находящаяся в Москве на Шаболовке). Две системы прямолинейных образующих имеют только Л. п. 2-го порядка.

  Изгибаемые друг на друга Л. п. можно катить одну по другой так, что в процессе качения они будут иметь общую образующую. На этом основано применение Л. п. в теории механизмов. См. также Линейчатая геометрия.

  Лит.: Фиников С. П., Теория поверхностей, М. — Л., 1934; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969.

  Э. Г. Позняк.

Большая Советская Энциклопедия (ЛИ) i008-pictures-001-289959645.jpg

Рис. 1 к ст. Линейчатая поверхность.

Большая Советская Энциклопедия (ЛИ) i009-001-226508401.jpg

Рис. 2 к ст. Линейчатая поверхность.

Линейчатые спектры

Лине'йчатые спе'ктры, спектры оптические, состоящие из отдельных спектральных линий, типичны для свободных атомов.


Перейти на страницу:
Изменить размер шрифта: