ИЗМЕРЕНИЯ g НА СЛУЖБЕ РАЗВЕДКИ

Речь идет не о военной разведке. Там знание ускорения свободного падения ни к чему. Речь идет о геологической разведке, цель которой — найти залежи полезных ископаемых под землей, не роя ям, не копая шахт.

Существует несколько методов очень точного определения ускорения свободного падения. Можно найти g просто взвешиванием стандартного груза на пружинных весах. Геологические весы должны быть предельно чувствительны — их пружина изменяет растяжение при добавлении нагрузки меньше чем в миллионную долю грамма. Превосходные результаты дают крутильные кварцевые весы. Устройство их в принципе несложно. К горизонтально натянутой кварцевой нити приварен рычаг, весом которого нить слегка закручивается (рис. 6.2).

Физические тела _89.jpg

Для тех же целей применяется и маятник. Еще недавно маятниковые способы измерения g были единственными, и лишь в последние 10–20 лет их стали вытеснять более удобные и точные весовые методы. Во всяком случае, измеряя период колебания маятника, по формуле Т = 2π∙√(l/g) можно найти значение g достаточно точно.

Измеряя на одном приборе значение g в разных местах, можно судить об относительных изменениях свободного падения с точностью до миллионных долей. Измеряя значение g в каком-либо месте земной поверхности, испытатель устанавливает: здесь значение аномально, оно меньше нормы на столько-то или выше нормы на такую-то величину.

Но что является нормой для значения g?

Значение ускорения свободного падения на земной поверхности имеет два закономерных изменения, которые давно уже прослежены и хорошо известны исследователям.

Прежде всего g закономерно уменьшается при переходе от полюса к экватору. Об этом говорилось выше. Напомним лишь, что такое изменение происходит по двум причинам: во-первых, Земля — не шар, и тело, находясь у полюса, будет ближе к центру Земли; во-вторых, по мере продвижения к экватору сила тяжести будет все больше ослабляться центробежной силой.

Второе закономерное изменение g — это уменьшение с высотой. Чем дальше от центра Земли, тем меньше g, в соответствии с формулой g = γ∙M/(R + h)2, где R — радиус Земли, h — высота над уровнем моря.

Таким образом, на одной и той же широте и на одной и той же высоте над уровнем моря ускорение свободного падения должно быть одинаковым.

Точные измерения показывают, что весьма часто встречаются отклонения от этой нормы — аномалии тяготения. Причина аномалий состоит в неоднородности распределения массы вблизи места измерения.

Как мы поясняли, сила тяготения со стороны большого тела может быть мысленно представлена как сумма сил, действующих со стороны отдельных частиц большого тела. Притяжение маятника Землей есть результат действия на него всех частичек Земли. Но ясно, что близкие частицы вносят наибольший вклад в суммарную силу — ведь притяжение обратно пропорционально квадрату расстояния.

Если вблизи места измерения сосредоточены тяжелые массы, g будет больше нормы, в обратном случае g меньше нормы.

Если, например, измерить g на горе или на самолете, летящем над морем на высоте горы, то в первом случае получится большая цифра. Например, на горе Этне в Италии значение g на 0,292 см/с2 выше нормы. Также выше нормы значение g на уединенных океанских островах. Ясно, что в обоих случаях возрастание g объясняется сосредоточением дополнительных масс в месте измерения.

Не только значение g, но и направление силы тяжести могут отклоняться от нормы. Если подвесить груз на нитке, то вытянутая нить покажет вертикаль для этого места. Эта вертикаль может отклониться от нормы. «Нормальная» вертикаль определяется по звездам, так как для любой географической точки вычислено, в какое место неба в данный момент суток и года «упирается» вертикаль «идеальной» фигуры Земли.

Представьте себе, что вы производите опыты с отвесом у подножия большой горы. Грузик отвеса притягивается Землей к ее центру и горой — в сторону. Отвес должен отклониться при таких условиях от направления нормальной вертикали (рис. 6.3).

Физические тела _90.jpg

Так как масса Земли много больше массы горы, то такие отклонения не превышают нескольких угловых секунд.

Отклонения отвеса приводят иногда к странным результатам. Например, во Флоренции влияние Аппенин приводит не к притяжению, а к отталкиванию отвеса. Объяснение может быть одно: в горах есть огромные пустоты.

Замечательный результат дают измерения ускорения свободного падения в масштабе материков и океанов. Материки значительно тяжелее океанов, поэтому, казалось бы, значения g над материками должны быть больше, чем над океанами. В действительности же значения g, промеренные вдоль одной широты над океанами и материками, в среднем одинаковы.

Объяснение опять-таки лишь одно: материки покоятся на более легких породах, а океаны — на более тяжелых. И действительно, там, где возможны непосредственные изыскания, геологи устанавливают, что океаны покоятся на тяжелых базальтовых породах, а материки — на легких гранитах.

Но сразу же возникает следующий вопрос: почему тяжелые и легкие породы так точно компенсируют различие весов материков и океанов? Такая компенсация не может быть делом случая, причины ее должны корениться в устройстве оболочки Земли.

Геологи полагают, что верхние части земной коры как бы плавают на подстилающей пластичной (т. е. легко деформируемой, как мокрая глина) массе. Давление на глубинах около 100 км должно быть всюду одинаковым, так же как одинаково давление на дне сосуда с водой, в котором плавают куски дерева разного веса. Поэтому столб вещества площадью 1 м2 от поверхности до глубины 100 км, должен иметь и под океаном, и под материком одинаковый вес.

Это выравнивание давлений (его называют изостазией) и приводит к тому, что над океаном и материками вдоль одной широтной линии значения ускорения свободного падения g не отличаются существенно.

Местные аномалии силы тяжести служат нам так, как маленькому Муку из сказки Гауфа служила его волшебная палочка, которая стучала о землю там, где находилось золото или серебро.

Тяжелую руду нужно искать в тех местах, где g наибольшее. Напротив, залежи легкой соли обнаруживают по местным занижениям значения g. Измерить g можно с точностью до стотысячных долей от 1 см/с2.

Методы разведки при помощи маятников и сверхточных весов называют гравитационными. Они имеют большое практическое значение, в частности для поисков нефти. Дело в том, что при гравитационных методах разведки легко обнаружить подземные соляные куполы, а очень часто оказывается, что где соль, там и нефть. Причем нефть лежит в глубине, а соль ближе к земной поверхности. Методом гравитационной разведки была открыта нефть в Казахстане и в других местах.

ТЯЖЕСТЬ ПОД ЗЕМЛЕЙ

Нам осталось осветить еще один интересный вопрос. Как будет меняться сила тяжести, если углубляться под землю?

Вес предмета — это результат натяжения незримых нитей, протянутых к этому предмету от каждого кусочка вещества Земли. Вес — это суммарная сила, результат сложения элементарных сил, действующих на предмет со стороны частиц Земли. Все эти силы, хотя и направлены под разными углами, тянут тело «вниз» — к центру Земли.

А какова будет тяжесть предмета, находящегося в подземной лаборатории? На него будут действовать силы притяжения и с внутренних, и с внешних слоев Земли.


Перейти на страницу:
Изменить размер шрифта: