Рассмотрим силы тяготения, действующие в точке, лежащей внутри земного шара, со стороны внешнего слоя. Если разбить этот слой на тонкие слои, вырезать в одном из них маленький квадратик со стороной а1 и протянуть линии от вершин квадрата через точку О, тяжесть в которой нас интересует, то на противоположной стороне слоя получится квадратик другого размера со стороной а2 (рис. 6.4).

Физические тела _91.jpg

Силы притяжения, действующие в точке О со стороны двух квадратиков, направлены противоположно и пропорциональны по закону тяготения m1/r12 и m2/r22. Но массы квадратов m1 и m2 пропорциональны площадям квадратов. Поэтому силы тяготения пропорциональны выражениям a12/r12 и a22/r22.

Предоставляем читателю доказать, что эти отношения будут равными, т. е. силы притяжения, действующие в точке О со стороны двух квадратиков, уравновешиваются.

Разбив тонкий слой на подобные пары «противоположных» квадратов, мы установили замечательный факт: тонкий однородный шаровой слой не действует на точку, расположенную внутри него. Но это верно для всех тонких слоев, на которые мы разбили шаровой пояс, лежащий над интересовавшей нас подземной точкой.

Значит, земной слой, находящийся над телом, все равно что отсутствует. Действие отдельных его частей на тело уравновешивается, и суммарная сила притяжения со стороны внешнего слоя равняется нулю.

Конечно, во всех этих рассуждениях мы считали плотность Земли постоянной внутри каждого слоя.

Результат наших рассуждений позволяет легко получить формулу для силы тяжести, действующей на любой глубине Н под землей. Точка, расположенная на глубине Н, испытывает лишь притяжение со стороны внутренних слоев Земли. Формула для ускорения силы тяжести g = γ∙M/r2 применима и для этого случая, но М и r — это масса и радиус не всей Земли, а ее «внутренней» но отношению к этой точке части.

Если бы Земля имела одинаковую плотность во всех слоях, то формула для g приняла бы вид:

Физические тела _92.jpg

где ρ — плотность, R — радиус Земли.

Это значит, что g менялось бы прямо пропорционально (R — H): чем больше глубина Н, тем меньше было бы g.

На самом же деле поведение g вблизи земной поверхности — мы можем проследить за ним вплоть до глубин 5 км (ниже уровня моря) — совсем не подчиняется этому закону. Опыт показывает, что в этих слоях g, наоборот, растет с глубиной. Расхождение опыта с формулой объясняется тем, что не было учтено различие плотности на разных глубинах.

Средняя плотность Земли легко находится делением массы на объем земного шара. Это приводит нас к цифре 5,52. В то же время плотность поверхностных пород много меньше — она численно равна 2,75. Плотность земных слоев растет с глубиной. В поверхностных слоях Земли этот эффект берет верх над идеальным уменьшением, которое следует из выведенной формулы, и величина g возрастает.

ЭНЕРГИЯ ТЯГОТЕНИЯ

На простом примере мы уже познакомились с энергией тяготения. Тело, поднятое на высоту h над Землей, обладает потенциальной энергией mgh.

Однако этой формулой можно пользоваться лишь тогда, когда высота h много меньше радиуса Земли.

Энергия тяготения — важная величина, и интересно получить формулу ее, которая годилась бы для тела, поднятого на любую высоту над Землей, а также вообще для двух масс, притягивающихся по универсальному закону:

Физические тела _93.jpg

Положим, что под действием взаимного притяжения тела немного сблизились. Между ними было расстояние r1, а стало r2. При этом совершается работа А = F∙(r1 r2). Значение силы надо взять в какой-то средней точке. Итак,

Физические тела _94.jpg

Если r1 и r2 мало отличаются друг от друга, то можно заменить r2ср произведением r1r2. Получаем:

Физические тела _95.jpg_0

Эта работа произведена за счет энергии тяготения:

A = U1 U2,

где U1 — начальное, a U2— конечное значение потенциальной энергии тяготения.

Сопоставляя эти две формулы, находим для потенциальной энергии выражение

Физические тела _96.jpg

Оно похоже на формулу силы тяготения, но в знаменателе стоит r в первой степени.

По этой формуле при очень больших r потенциальная энергия U = 0. Это разумно, так как на таких расстояниях притяжение уже не будет чувствоваться. Но при сближении тел потенциальная энергия должна уменьшаться. Ведь за ее счет происходит работа.

А куда же уменьшаться от нуля? В отрицательную сторону. Поэтому в формуле и стоит минус. Ведь —5 меньше нуля, а —10 меньше —5.

Если речь идет о движении около земной поверхности, то общее выражение силы тяготения можно заменить произведением mg. Тогда с большой точностью U1 U2 = mgh.

Но на поверхности Земли тело имеет потенциальную энергию — γ∙Mm/R — где R — радиус Земли. Значит, на высоте h над земной поверхностью

Физические тела _97.jpg

Когда мы впервые ввели формулу потенциальной энергии U = mgh, было условлено высоту и энергию отсчитывать от земной поверхности. Пользуясь формулой U = mgh, мы отбрасываем постоянный член — γ∙Mm/R, условно считаем его равным нулю. Так как нас интересуют лишь разности энергий — ведь обычно измеряется работа, которая есть разность энергий, — то присутствие постоянного члена — у в формуле потенциальной энергии роли не играет.

Энергия тяготения определяет прочность цепей, «привязывающих» тело к Земле. Как порвать эти цеци, как добиться того, чтобы брошенное с Земли тело не вернулось на Землю? Ясно, что для этого нужно придать телу большую начальную скорость. Но каково же минимальное требование?

По мере отдаления от Земли потенциальная энергия выброшенного с Земли тела (снаряда, ракеты) будет расти (абсолютное значение U падает); кинетическая энергия будет падать. Если кинетическая энергия тела станет равной нулю преждевременно, до того как мы оборвем цепи тяготения земного шара, выброшенный снаряд упадет обратно на Землю.

Необходимо, чтобы тело сохраняло кинетическую энергию до тех пор, пока его потенциальная энергия практически не упадет до нуля. Перед отправлением снаряд обладал потенциальной энергией — γ∙Mm/R (М и R — масса и радиус Земли). Поэтому снаряду нужно дать такую скорость, которая сделала бы полную энергию оторвавшегося снаряда положительной. Тело с отрицательной полной энергией (абсолютное значение потенциальной энергии больше значения кинетической) не выберется за пределы сферы тяготения.


Перейти на страницу:
Изменить размер шрифта: