Таким образом, мы приходим к простому условию. Для того чтобы тело массы m оторвать от Земли, надо, как уже сказано, преодолеть потенциальную энергию тяготения
Скорость снаряда должна быть при этом доведена до значения так называемой второй космической скорости которую легко вычислив из равенства кинетической и потенциальной энергий:
или, так как g = γ∙M/R2,
v22 = 2∙g∙R.
Значение v2, вычисляемое но этой формуле, составляет 11 км/с — конечно, без учета сопротивления атмосферы. Эта скорость в √2 = 1,41 раза больше первой космической скорости v1 = √(g∙R) искусственного спутника, вращающегося около земной поверхности, т. е v2 = √2∙v1.
Масса Луны в 81 раз меньше массы Земли; радиус ее меньше земного в четыре раза. Поэтому энергия тяготения на Луне в двадцать раз меньше, чем на Земле, и для отрыва от Луны достаточно скорости 2,5 км/с.
Кинетическая энергия mv22/2 тратится на то, чтобы порвать цепи тяготения к планете — отправной станции. Если же мы хотим, чтобы, преодолев тяготение, ракета двигалась со скоростью v, то на это нужна дополнительная энергия mv2/2. В этом случае, посылая ракету в путешествие, необходимо сообщить ей энергию mv02/2 = (mv22/2) + (mv2/2). Таким образом, три скорости, о которых идет речь, связаны простым соотношением:
v02 = v22 + v2
Чему же должна равняться скорость v3, нужная для преодоления тяготения Земли и Солнца, — минимальная скорость снаряда, посылаемого к далеким звездам?
Эту скорость мы обозначили v3, потому что ее называют третьей космической скоростью.
Определим прежде всего значение скорости, необходимой для преодоления одного лишь притяжения Солнца.
Как мы только что показали, скорость, нужная для выхода из сферы земного притяжения снаряда, отправляемого в путешествие, в √2 раз больше, чем скорость вывода на орбиту земного спутника. Эти рассуждения в равной степени относятся и к Солнцу, т. е. скорость, нужная для ухода от Солнца, в √2 раз больше, чем скорость спутника Солнца (т. е. Земли). Поскольку скорость движения Земли вокруг Солнца составляет примерно 30 км/с, то скорость, необходимая для ухода из сферы притяжения Солнца, равна 42 км/с. Это очень много, однако для отправления снаряда к далеким звездам надо, разумеется, использовать движение земного шара и запускать тело в ту сторону, куда движется Земля. Тогда нам нужно добавить всего 42–30 = 12 км/с.
Теперь мы можем окончательно вычислить третью космическую скорость. Это скорость, с которой надо вывести ракету, чтобы, выйдя из сферы земного притяжения, она имела скорость 12 км/с. Воспользовавшись формулой, приведенной только что, получим:
v32 = (11)2 + (12)2,
откуда v3=16 км/с.
Итак, имея скорость около 11 км/с тело покинет Землю, но «далеко» такой снаряд не уйдет; Земля его отпустила, по Солнце не даст ему свободы. Он превратится в спутника Солнца.
Оказывается, что скорость, необходимая для межзвездного путешествия, всего лишь в полтора раза больше скорости, нужной для путешествия по Солнечной системе внутри земной орбиты. Правда как уже говорилось, всякое заметное увеличение начальной скорости снаряда сопряжено с немалыми техническими трудностями (см. стр. 87).
На вопрос, как движутся планеты, можно ответить кратко: повинуясь закону тяготения. Ведь силы тяготения — единственные силы, приложенные к планетам.
Так как масса планет много меньше массы Солнца, то силы взаимодействия между планетами не играют большой роли. Каждая из планет движется почти так, как это диктует ей сила притяжения одного лишь Солнца, словно других планет и не существует.
Законы движения планеты вокруг Солнца следуют из закона всемирного тяготения.
Впрочем, исторически дело было не так. Законы движения планет были найдены замечательным немецким астрономом Иоганном Кеплером до Ньютона без помощи закона тяготения на основании почти двадцатилетней обработки астрономических наблюдений.
Пути, или, как говорят астрономы, орбиты, которые описывают планеты около Солнца, очень близки к окружностям.
Как связан период обращения планеты с радиусом ее орбиты?
Сила тяготения, действующая на планету со стороны Солнца, равна
где М — масса Солнца, m — масса планеты, r — расстояние между ними
Но F/m есть, согласно основному закону механики, не что иное, как ускорение, и притом центростремительное:
F/m = v2/r
Скорость планеты можно представить как длину окружности 2πr, поделенную на период обращения Т.
Подставив v = 2π∙r/T и значение силы F в формулу ускорения, получим:
Коэффициент пропорциональности перед r3 есть величина, зависящая только от массы Солнца, — одинаковая для любой планеты. Следовательно, для двух планет справедливо соотношение
T12/T22 = r13/r23
Отношение квадратов времен обращения планет оказывается равным отношению кубов радиусов их орбит. Этот интересный закон был выведен Кеплером из опыта. Закон всемирного тяготения объяснил наблюдения Кеплера.
Круговое движение одного небесного тела около другого — это лишь одна из возможностей.
Траектории одного тела, вращающегося около другого благодаря силам тяготения, могут быть самыми различными. Однако, как показывает расчет и как еще до всякого расчета было обнаружено Кеплером, все они принадлежат к одному классу кривых, называемых эллипсами.
Если привязать нитку к двум булавкам, воткнутым в лист чертежной бумаги, натянуть нитку острием карандаша и двигать карандашом так, чтобы нитка оставалась натянутой, то на бумаге в конце концов прочертится замкнутая кривая — это в есть эллипс (рис. 6.5). Места, где находятся булавки, будут фокусами эллипса.
Эллипсы могут иметь различную форму. Если взять нитку много длиннее, чем расстояние между булавками, то эллипс будет очень похож на круг. Напротив, если длина нитки чуть-чуть больше расстояния между булавками, то получится удлиненный эллипс — почти палочка.
Планеты описывают эллипсы, в одном из фокусов которых находится Солнце.
Какие же эллипсы описывают планеты? Оказывается, очень близкие к окружности Наиболее отличен от окружности путь ближайшей к Солнцу планеты — Меркурия. Но и в этом случае самый длинный диаметр эллипса всего лишь на 2 % больше самого короткого. Иное дело орбиты искусственных планет. Посмотрите на рис. 6.6. Орбиту Марса не отличишь от круга.
Однако Солнце находится в одном из фокусов эллипса, а не в его центре, и поэтому расстояние планеты от Солнца меняется сильнее. Проведем линию через два фокуса эллипса — она пересечет эллипс в двух местах. Точку, ближайшую к Солнцу, называют перигелием, наиболее далекую от Солнца — афелием. Меркурий, когда находится в перигелии, в 1,5 раза ближе к Солнцу, чем в афелии.