Итак, влияние Луны на земную механику состоит в изменении веса тел, находящихся на земной поверхности. При этом в наиболее близкой и далекой от Луны точках вес уменьшается, а на средней линии возрастает, причем изменение веса во втором случае в два раза меньше чем в первом.
Разумеется, проведенные рассуждения верны для любой планеты, для Солнца, для звезд.
Нетрудно подсчитать, что ни планеты, ни звезды не дают и ничтожной доли лунного ускорения.
Сравнить действие любого небесного тела с действием Луны очень легко: надо разделить добавочные ускорения этого тела на «лунный добавок»:
Это отношение не намного меньше единицы лишь для Солнца. Солнце много дальше от нас, чем Луна, но масса Луны в десятки миллионов раз меньше массы Солнца.
Подставив числовые значения, найдем, что под влиянием Солнца земная тяжесть изменяется в 2,17 раза меньше, чем под влиянием Луны.
Прикинем теперь, насколько изменят вес земные тела, если Луна покинет земную орбиту. Подставив числовые значения в выражение 2γ∙m∙D/r3, найдем, что лунное ускорение есть величина порядка 0,0001 см/с, т. е. одной десятимиллионной доли g.
Казалось бы, почти ничего. Стоило ли ради этого ничтожного эффекта с напряжением следить за решением довольно сложной задачи механики? Не торопитесь с подобным заключением. Этот «ничтожный» эффект является причиной мощных приливных волн. Он ежесуточно создает 1015 Дж кинетической энергии, перемещая огромные массы воды. Эта энергия равняется энергии, несомой всеми реками земного шара.
Действительно, процентное изменение величины, которое мы рассчитали, — очень маленькое. Тело, ставшее легче на столь же «ничтожную» величину, отдалится от центра Земли. Но ведь радиус Земли — это 6 000 000 м, и ничтожное отклонение будет измеряться десятками сантиметров.
Представьте себе, что Луна остановила свое движение по отношению к Земле и сияет где-то над океаном. Расчет показывает, что уровень воды в этом месте повысится на 54 см. Такой же подъем воды произойдет у антиподов. На средней линии между этими крайними точками уровень воды в океане понизится на 27 см.
Благодаря вращению Земли вокруг своей оси «места» подъемов и опусканий океана все время перемещаются. Это и есть приливы. В течение примерно шести часов происходит подъем уровня воды, вода надвигается на берег — это прилив. Затем наступает отлив, он тоже длится шесть часов. В каждые лунные сутки происходит два прилива и два отлива. Картина приливных явлений сильно осложняется трением частиц воды, формой морского дна и очертанием берегов.
Например, в Каспийском море приливы и отливы невозможны просто потому, что вся поверхность моря одновременно находится в одинаковых условиях.
Также отсутствуют приливы во внутренних морях, соединенных с океаном длинными и узкими проливами, — например Черном, Балтийском.
Особенно большие приливы бывают в узких бухтах, где приливная волна, идущая из океана, сильно повышается. Например, в Гижигинской губе на Охотском море высота прилива достигает нескольких метров.
Если берега океана достаточно плоские (например, во Франции), подъем воды во время прилива может на многие километры изменить положение границы суши и моря.
Приливные явления мешают Земле вращаться. Ведь движение приливных волн связано с трением. На преодоление этого трения — его называют приливным — должна затрачиваться работа. Поэтому энергия вращения, а с ней и скорость вращения Земли около оси, падает.
Это явление и приводит к удлинению суток, о котором шла речь на стр. 10.
Приливное трение позволяет понять, почему Луна обращена к Земле всегда одной и той же стороной.
Когда-то Луна, вероятно, была в жидком состоянии. Вращение этого жидкого шара около Земли сопровождалось сильнейшим приливным трением, которое постепенно замедляло движение Луны. Наконец, Луна перестала вращаться по отношению к Земле, приливы прекратились, и Луна спрятала от нашего взора половину своей поверхности.
Глава 7
Давление
Гидравлический пресс — это старинная машина, но она сохранила свое значение до наших дней.
Посмотрите на рис. 7.1, изображающий гидравлический пресс.
В закрытом сосуде с водой могут ходить два поршня — маленький и большой. Если надавить рукой на один поршень, то давление передается другому поршню — он поднимется. Сколько воды вдавит внутрь сосуда первый поршень, столько же воды поднимется над начальной меткой второго поршня.
Если площади поршней S1 и S2, а смещения l1 и l2, то равенство объемов дает: S1∙l1= S2∙l2, или
l1/l2 = S2/S1
Нам нужно узнать условие равновесия поршней.
Это условие мы найдем без труда, исходя из того, что работа уравновешивающихся сил должна равняться нулю. Если так, то при перемещении поршней работы действующих на поршни сил должны быть равны (с обратным знаком). Значит,
F1∙l1 = F2∙l2, или F2/F1 = l1/l2
Сравнивая с предыдущим равенством, мы видим, что
F2/F1 = S2/S1
Это скромное уравнение означает возможность огромного умножения силы. Поршень, передающий давление, может иметь в сотни, в тысячи раз меньшую площадь. Во столько же раз будет отличаться сила, действующая на большой поршень от мускульной силы.
При помощи гидравлического пресса можно ковать и штамповать металлы, давить виноград, поднимать тяжести.
Конечно, выигрыш в силе будет сопровождаться проигрышем в пути. Чтобы сжать прессом тело на 1 см, придется рукой пройти путь, во столько раз больший, во сколько раз отличаются силы F2 и F1.
Отношение F/S физики называют давлением (его обозначают буквой р). Вместо того чтобы говорить: сила в 1 кгс действует на площадь в 1 см2, мы будем говорить короче: давление р = 1 кгс/см2. Это давление называют технической атмосферой (1 кгс/см2 = 1 ат).
Вместо отношения F2/F1 = S2/S1 можно теперь записать:
F2/S2 = F1/S1, т. е. p1 = p2
Итак, давления на оба поршня одинаковы.
Наше рассуждение не зависит от того, где расположены поршни, будут ли их поверхности горизонтальны, вертикальны или наклонны. Да и вообще дело не в поршнях. Можно мысленно выбрать два любых участка поверхности, заключающей жидкость, и утверждать, что давления на этой поверхности всюду одинаковы.
Оказывается, таким образом, что давление внутри жидкости одинаково во всех ее точках и во всех направлениях. Иначе говоря, на площадку определенного размера действует одинаковая сила, где бы и как ни была расположена площадка. Это положение носит название закона Паскаля.
Закон Паскаля справедлив для жидкостей и газов. Однако он не учитывает одного важного обстоятельства — существования веса.
В земных условиях этого нельзя забывать. Весит и вода. Поэтому понятно, что две площадки, находящиеся на разной глубине под водой, будут испытывать разные давления. Чему же равно это различие? Выделим мысленно внутри жидкости прямой цилиндр с горизонтальными донышками. Вода, находящаяся внутри него, давит на окружающую воду. Полная сила этого давления равна весу mg жидкости в цилиндре (рис. 7.2).