Впервые «эффект Эдисона» был практически использован в 1904 году английским ученым Флемингом. Для приема сигналов беспроволочного телеграфа ему необходим был детектор — прибор с односторонним пропусканием электрического тока. А так как «эффектная» лампа, которую построил Эдисон, пропускала ток только в одном направлении, то Флеминг и приспособил ее для своего аппарата.
По аналогии с клапанами, пропускающими жидкость или газы только в одном направлении, Флеминг назвал свой прибор электрическим вентилем, или клапаном.
Клапан Флеминга.
Подобное устройство не устарело и поныне. Многие современные лампы, в сущности, ничем не отличаются от устройства Эдисона или клапанов Флеминга. Изменились только названия, а принцип остался прежний.
Нить, излучающую электроны, теперь называют катодом. Пластинку, притягивающую электроны, — анодом. Лампу с катодом и анодом, то есть с двумя электродами, называют двухэлектродной лампой, или, сокращенно, диодом. Основное применение двухэлектродной лампы — это превращение переменного электрического тока в постоянный, или, как говорят, выпрямление переменного тока. Такая выпрямительная лампа имеет еще специальное название — кенотрон. Кроме выпрямления переменного тока, двухэлектродная лампа используется еще для детектирования радиосигналов, как это сделал Флеминг, то есть, в сущности, тоже для выпрямления переменного тока, только высокой частоты.
Два года спустя американский ученый Ли де-Форест поместил между катодом и анодом новый электрод в виде решетки или сетки. Третий электрод так сейчас и называется — сетка, а лампа с тремя электродами — трехэлектродной лампой, или триодом.
С другими электродами сетка внутри лампы не соединяется, а провод от нее выводится из колбы наружу. Если этот сеточный вывод соединить с катодом, то сетка будет иметь такой же заряд, что и катод, и почти совершенно не будет влиять на поток электронов, летящих к аноду. Основная их масса свободно проскочит через отверстия в сетке, так как соотношение размеров электронов с отверстиями в сетке примерно такое же, как размеры человека с расстояниями между небесными телами.
Но если между выводом сетки и катода включить батарею, то сетка зарядится, в зависимости от направления включения батареи, положительно или отрицательно. Получив заряд того или иного знака, сетка уже энергично будет вмешиваться в происходящие в лампе электронные процессы.
Влияние положительно и отрицательно заряженной сетки.
Введение в двухэлектродную лампу третьего электрода — сетки — наделило электронную лампу замечательной способностью усиливать электрические колебания. Благодаря этому трехэлектродная лампа получила широчайшее распространение. Дальнейшие исследования показали, что трехэлектродная лампа обладает еще одним, исключительно важным свойством — способностью преобразовывать подводимую от батарей мощность постоянного тока в энергию переменного тока желаемой частоты. Электронная лампа стала использоваться в качестве генератора электрических колебаний и быстро вытеснила все другие типы генераторов. Ничто не могло превзойти ее изо простоте, гибкости, экономичности, стабильности и устойчивости работы.
Эти свойства трехэлектродной электронной лампы произвели целую революцию в радиотехнике. Лампа сделала радио «говорящим, поющим и играющим», то есть разрешила проблему радиотелефонии. Она намного подняла чувствительность радиоприемника, увеличила дальность приема и позволила осуществить громкоговорящий прием.
С появлением электронной лампы радио сразу же выдвинулось на первое место среди всех видов связи.
Но в свою очередь потребности радиотехники вызвали бурный прогресс и развитие самой электронной лампы. Вовнутрь лампы стали вводить новые сетки, в результате чего появилась целая серия многоэлектродных ламп.
Разрез электронной лампы с двумя сетками.
В трехэлектродную лампу ввели вторую сетку, и получилась четырехэлектродная лампа — тетрод. Затем появляется лампа с тремя сетками — пентод. Но и на этом ламповая техника не остановилась. Лаборатории продолжают усиленно работать над дальнейшим развитием лампы: появились лампы с четырьмя сетками — гексод, с пятью сетками — пентагрид — и даже с шестью — октод.
Различные типы электронных ламп: диод, триод, тетрод, пентод, гексод, пентагрид и октод.
Введение в лампу нескольких сеток хотя и усложняет конструкцию лампы и увеличивает ее стоимость, но зато оно в значительной степени повышает ее качества. Преимущества новых ламп были так велики, что трехэлектродные лампы были вытеснены не только из приемных и усилительных, но и из генераторных установок.
Промышленность выпустила целый ряд типов комбинированных ламп. В одном баллоне такой лампы были заключены фактически две, а то и три отдельные лампы. В качестве примера таких ламп можно привести распространенные комбинации: два диода и триод (ДДТ), два диода и пентод (ДДП), два триода и т. п.
А одна иностранная фирма выпустила в виде одной лампы целые трехламповые усилители со всеми необходимыми деталями схемы (сопротивлениями, конденсаторами и т. п.).
Процесс усовершенствования ламп происходил не только в отношении их электрических показателей, но и в отношении их конструкций. Первые типы электронных ламп мало отличались от обычных ламп накаливания. Они имели примерно такую же форму и почти так же ярко светились. Но в дальнейшем их внешний вид стал постепенно изменяться. Лампа приобрела металлический, зеркальный блеск, перестала светиться, изменила форму и размеры. В некоторых типах электронных ламп стеклянный баллон был заменен металлическим (стальным). На свою «бабушку» — лампу накаливания — подобные лампы с металлическим баллоном были уже совершенно не похожи.
Появились кроме того, чрезвычайно миниатюрные лампы. Некоторые из них напоминали по форме жолудь, и их стали называть лампами типа «жолудь». Другие были величиной с полпальца; к ним пристало название «пальчиковые».
Внешний вид приемных электронных ламп.
Но одновременно с этим размеры некоторых ламп продолжали увеличиваться. Для усиления колебаний в передатчиках потребовались большие, мощные лампы. Конструкторы построили огромные, чуть ли не в человеческий рост, лампы мощностью в сотни киловатт. Эти лампы выделяют при работе такое количество тепла, что, если бы их не охлаждали проточной водой, они бы расплавились. Огромное количество тепла, которое уносит охлаждающая вода, стараются использовать на дело. Так, например, некоторые мощные радиостанции употребляют эту воду в зимнее время для отопления станционных зданий.