Если верить ученому Торичелли, который утверждал, что «природа не любит пустоты», то придется заключить, что, очевидно, электронная лампа «расходится во вкусах» с природой. Она «обожает» пустоту и не может без нее жить. Лампа нормально работает лишь в том случае, если давление в ней составляет примерно одну миллиардную часть атмосферного. При большем давлении работа лампы нарушается, срок службы ее чрезвычайно сокращается, а при значительном количестве воздуха нить ее моментально перегорит. Таким образом, получение нужного вакуума (пустоты) играет чрезвычайно важную роль в жизни и работе лампы. Но получить такую «громадную пустоту» невозможно даже при помощи самых лучших насосов. Поэтому, кроме откачки воздуха, в лампу вводятся особые поглотители (геттеры), которые обладают способностью поглощать газ и обеспечивают требуемый вакуум.
Но в некоторых лампах баллоны умышленно наполняются определенными газами или парами. В этом случае ток, протекающий через лампу, не будет уже определяться исключительно электронами, вылетевшими из катода, как в вакуумной лампе. Здесь электрон, вылетев из катода, может по пути к аноду столкнуться с молекулой — газа. Если удар будет достаточно сильным, то он может выбить из молекулы другой электрон. Молекула тогда сделается ионом и начнет двигаться к катоду, а оба электрона полетят дальше к аноду. Но они опять могут столкнуться с новыми молекулами и разобьют их. Процесс образования ионов и электронов, или, как говорят, процесс ионизации газа, будет нарастать, как лавина, летящая с горы. Поэтому, когда надо получить большие силы тока, выгоднее применять лампу, наполненную газом.
Однако газонаполненные лампы имеют и ряд недостатков. Главнейший из них состоит в том, что процесс ионизации происходит сравнительно медленно.