
16.1. Если хотя бы одна из проекций данного отрезка А В - горизонтальная АС или вертикальная AD - имеет четную длину, не равную, однако, нулю, то середина Е отрезка А В лежит на его пересечении с линией сетки, проходящей через середину F этой проекции перпендикулярно ей (рис. 66).

Рис. 66
Если обе указанные проекции имеют четную длину, то середина отрезка даже совпадает с некоторым узлом сетки (рис. 67).

Рис. 67
Если же ни одна из проекций не имеет четной положительной длины, то можно отступить от одного конца отрезка АВ на несколько клеток в одну сторону, от другого конца на столько же клеток в противоположную сторону и провести прямую через полученные точки С и D (рис. 68). Точка пересечения этой прямой с исходным отрезком и будет его серединой. Это вытекает из того факта, что четырехугольник АОВС является параллелограммом, ибо имеет пару равных и параллельных противоположных сторон АС и DB (точки С и D, конечно, всегда можно выбрать не лежащими на прямой АВ).

Рис. 68
16.2. Для того чтобы отразить узел А симметрично относительно узла Е, достаточно сосчитать по клеточкам длину горизонтальной проекции AF отрезка АЕ и длину вертикальной проекции FE этого же отрезка. После этого останется отложить от точки Е в вертикальном направлении точку G и от нее в горизонтальном направлении точку В так, чтобы выполнялись равенства
(рис. 67). Симметричность точек А и В относительно точки Е вытекает из равенства прямоугольных треугольников AFE и BGE (по двум катетам). Из построения ясно, что точка Е обязательно является узлом сетки.
16.3. Как и в задаче 16.1, ситуация сильно упрощается, если хотя бы одна из проекций данного отрезка АВ положительна и кратна заданному числу n. В этом случае достаточно найти точки пересечения отрезка с линиями сетки, делящими указанную проекцию на n равных частей. Таким способом можно разделить отрезок АВ, изображенный на рис. 69, как на 5, так и на 7 равных частей. Но вот для деления того же отрезка, скажем, на n = 6 равных частей одних лишь линий сетки не хватает. Для этого можно поступить следующим образом: отложим от точки А в одном направлении на равных расстояниях друг от друга точки А1, А2 ... An-1 (на рис. 69 точки А1, ... An расположены в подряд идущих узлах сетки), а от точки В в противоположном направлении на тех же расстояниях друг от друга точки B1, B2 ... Bn-1 (на рис. 69 это точки B1, ... B5). Соединив прямыми линиями попарно А1 и Вn-1, A2 и Вn-2, ..., An-1 и B1, мы разделим этими прямыми отрезок AВ на n равных частей, поскольку все полуденные прямые параллельны, так как являются сторонами соответствующих параллелограммов) и отстоят друг от друга на равных расстояниях.

Рис. 69
16.4. Пользуясь методами, изложенными в решении задачи 16.1, можно построить середины сторон треугольника АВС, а затем провести его медианы. Точка Е пересечения медиан не обязательно попадает в узел, даже если середины всех трех сторон треугольника являются узлами сетки (рис. 70). Можно доказать, что это попадание произойдет тогда и только тогда, когда сумма горизонтальных, равно как и сумма вертикальных проекций векторов
кратна 3.

Рис. 70
16.5. Сосчитаем по клеточкам длину горизонтальной проекции AE и вертикальной проекции EB вектора
после этого точку С перенесем по горизонтали в точку F, которую затем перенесем по вертикали в точку D так, чтобы выполнялись равенства
(рис.71). Тогда из равенства прямоугольных треугольников ABE и CDF и параллельности их соответствующих катетов следует равенство и параллельность их гипотенуз АВ и CD. Таким образом, имеем требуемое равенство
Из построения ясно, что точка D совпадает с узлом сетки.

Рис. 71
Заметим, что точку D можно было построить и по-другому: параллельно перенеся точку В на вектор ![]()
16.6. В силу параллельности средних линий треугольника ABC соответствующим его сторонам получаем, что середины D, Е и F сторон АВ, ВС и СА этого треугольника образуют вместе с вершиной А параллелограмм ADEF (рис. 72). Поэтому, если три его вершины A, D и F находятся в узлах сетки, то четвертая вершина, будучи результатом параллельного переноса точки D на вектор
также совпадает с узлом сетки (см. задачу 16.5).

Рис. 72
16.7. Пусть данная прямая проходит через узлы А и В, чтобы провести через данный узел С прямую, параллельную прямой АВ, достаточно параллельно перенести точку В на вектор
(см. задачу 16.5) и через полученную точку D провести прямую CD.
Для симметричного отражения прямой CD относительно прямой АВ можно затем параллельно перенести точки A и В на вектор
и провести через полученные точки G и H прямую. Хотя точки G и Н, вообще говоря, не симметричны точкам С и D относительно прямой АВ, но прямая GH параллельна прямой АВ и отстоит от нее на том же расстоянии, что и прямая CD (рис. 73).

Рис. 73
16.8. Чтобы повернуть точку А вокруг точки В в данном направлении на угол 90°, можно поступить следующим образом: сосчитать по клеточкам длину горизонтальной проекции ВС и вертикальной проекции СА отрезка AB, а затем отложить от точки В по вертикали точку D, а от нее по горизонтали точку L так, чтобы выполнялись равенства BC = BD и CA = DE (рис. 74). Тогда полученная точка Е и будет результатом указанного поворота точки Л, если, конечно, каждый из катетов BD и DE прямоугольного треугольника BDE является результатом поворота вокруг точки В катетов ВС и СА соответственно прямоугольного треугольника ВСА именно в том направлении, в котором требовалось (на рис. 74 - это направление против часовой стрелки). Равенство АВ = ВЕ вытекает из равенства упомянутых прямоугольных треугольников (по двум катетам), а перпендикулярность отрезков АВ и BE является следствием соотношения ∠ ABE = ∠ ABD + ∠ DBE = ∠ DBA + ∠ ABC = ∠DBC = 90°.

Рис. 74
16.9. Повернем одну из двух данных вершин А или В, скажем А, вокруг вершины В на угол 90°, затем вершину В вокруг полученной точки С на угол 90° в том же направлении (рис. 75). Полученная в результате точка D вместе с точкой С и двумя данными вершинами А и В образует вершины квадрата (поскольку четырехугольник ABCD, согласно построению, является параллелограммом с прямым углом при вершине В и равными соседними сторонами АВ и ВС). Попутно мы доказали, что вершины С и D искомого квадрата находятся в узлах сетки, так как они являются; результатом поворота, описанного в решении задачи 16.8.

Рис. 75
16.10. Во-первых, повернем один конец А данного отрезка АВ на угол 90° вокруг другого его конца В в любом направлении (см. задачу 16.8) и получим в результате точку С. Во-вторых, параллельно перенесем заданную точку D на вектор
, получив точку Е (см. задачу 16.5). Искомый перпендикуляр совпадает с прямой DE (рис. 76), поскольку эта прямая параллельна перпендикуляру ВС к прямой АВ. Впрочем, при известной сноровке точку С можно и не строить, а откладывать известный вектор ВС сразу от точки D.

Рис. 76
16.11. Искомая точка А лежит как на перпендикуляре ВС к данной прямой DE, проходящем через заданную точку В, так и на прямой FG, параллельной прямой DE и отстоящей от нее на то же расстояние, что и точка В. Построение точек С и F, G можно произвести, не проводя никаких линий (см. решения задач 16.10, 16.7), а затем найти точку пересечения А прямых ВС и FG. Эта точка, вообще говоря, не обязательно является узлом сетки, что хорошо видно на рис. 77.

Рис. 77
16.12. Если прямая проходит через два узла А и В, то она либо совпадает с линией сетки и тогда образует с ней нулевой угол с нулевым тангенсом, либо является гипотенузой прямоугольного треугольника ABC, катетами АС и ВС которого служат целочисленные горизонтальная и вертикальная проекции отрезка АВ. В последнем случае тангенсом одного из острых углов треугольника ABC является отношение ВС/АС, которое есть рациональное число.
Для доказательства обратного утверждения допустим, что тангенс угла наклона данной прямой к горизонтали равен рациональному числу m/n, где m и n - натуральные числа. Тогда, отступив от узла сетки, через который уже проходит наша прямая, на n единиц по горизонтали, а затем на m единиц по вертикали (в соответствующую сторону), мы получим еще один узел сетки, который обязан лежать на той же прямой, поскольку отрезок, соединяющий два этих узла, составляет с горизонталью угол, тангенс которого равен как раз m/n.
16.13. Отметим точки D, E, F, G и соединим их с точками A, В и С и друг с другом так, как показано на рис. 78. Тогда из равенства прямоугольных треугольников ADB, АЕС и их расположения относительно линий сетки вытекает что точка С является результатом поворота точки В, вокруг точки А на угол 90° (см. задачу 16.8). Поэтому ABC есть равнобедренный прямоугольный треугольник с гипотенузой ВС. Отсюда имеем равенство ∠ AВС = 45°.

Рис. 78
Учитывая также, что угол ABC составлен из угла AВС, тангенс которого равен у, и угла FBC, тангенс которого равен 1/2, получаем равенство ![]()
16.14. Наложим на квадрат ABCD сетку с шагом, равным четверти стороны квадрата, и обозначим узлы G и Н так, как указано на рис. 79. Тогда из равенства и расположения прямоугольных треугольников EFG и DFH вытекает, что Е является результатом поворота точки D вокруг точки F на угол 90° (см. задачу 16.8). Поэтому из равнобедренного прямоугольного треугольника DFE имеем равенства
![]()

Рис. 79
16.15. Расположим сетку так же, как это было сделано при решении задачи 16.14, и обозначим на луче узлы сетки G, H, К, а также узлы L, М, N и Р, Q, R в соответствии на рис. 80. Учитывая, что угол DF5 прямой, получаем равенства


Рис. 80
Теперь остается заметить справедливость соотношений

и посчитать тангенсы углов

После этого требуемые равенства получаются, если вместо указанных углов подставить соответствующие арктангенсы.