Решения

000ho.jpeg

17.1. Обычно бумагу перегибают следующим образом: одну часть листа накладывают на другую и, прижав их друг к другу в определенном месте одной рукой, разглаживают оба листа другой рукой до образования складки. Если при этом некоторые две точки А и В бумаги оказались прижатыми друг к другу, то любая точка С складки будет равноудалена от точек А и В, так как отрезки АС и ВС после разглаживания окажутся прижатыми друг к другу. Поскольку множество таких точек С совпадает с серединным перпендикуляром к отрезку АВ, то полученная складка будет прямой линией. Заметим, что любые точки листа бумаги, которые оказываются прижатыми друг к другу после его перегибания по некоторой прямой, являются симметричными относительно этой прямой на развернутом листе.

17.2. Перегнем лист бумаги по прямой линии, проходящей через точки А и В так, чтобы сами точки остались на видимой стороне бумаги после перегибания (рис. 90). Тогда, прижав друг к другу точки А и В неразвернутого листа и разгладив этот лист, мы получим искомую точку С на прямой АВ, равноудаленную от А и В (решение задачи 17.1).

000535.jpeg

Рис. 90

17.3. Перегнем лист бумаги по данной прямой так, чтобы данная точка D осталась на видимой стороне листа. Затем, не разворачивая лист бумаги, перегнем его еще раз по прямой, проходящей через точку D, проследив при этом за тем, чтобы некоторые точки А и В данной прямой совместились (рис. 90). Тогда полученная прямая CD будет перпендикулярна прямой АВ, поскольку углы ACD и BCD в силу симметрии равны друг другу и составляют в сумме развернутый угол АСВ.

В описанном здесь построении после первого перегибания бумагу можно полностью развернуть, а затем перегнуть по прямой, проходящей через точку D, проследив за тем, чтобы совместились некоторые другие точки прямой АВ, одна из которых лежит на самом краю листа.

17.4. Проведем сначала перпендикуляр к данной прямой к, как описано в решении задачи 17.3, а потом проведем перпендикуляр к полученной прямой, проходящий через иную точку. Последняя прямая будет параллельна данной, так как обе они перпендикулярны одной и той же прямой.

17.5. Если круг вырезан из бумаги, то, перегнув его полам по некоторому диаметру АВ (для этого нужно, чтобы, как на рис. 91, при наложении две полуокружности вместились друг с другом), а затем перегнув лист еще раз так, чтобы совместились точки А и В, мы получим центр О круга (см. задачу 17.2).

000536.jpeg

Рис. 91

Если же круг нарисован на непрозрачной бумаге, то перегнем лист по какой-нибудь хорде и по серединному перпендикуляру АВ к ней, а затем найдем середину О этого перпендикуляра (см. задачи 17.2, 17.3). Точка О будет центром круга, так как АВ - его диаметр (серединный перпендикуляр к некоторой хорде).

17.6. Перегнем бумагу по прямой, проходящей через Центр О окружности и данную ее точку А, так, чтобы точки О и А оказались на видимой стороне листа (рис. 92). Теперь перегнем лист еще раз по линии, проходящей через точку О, следя за тем, чтобы точка А совместилась с какой-нибудь точкой В проведенной прямой. Тогда точка В будет удалена на расстояние ОА от центра окружности, т. е. будет лежать как на прямой, так и на окружности. Подбирая другой угол между первой и второй линиями перегиба, мы получим еще одну точку С пересечения прямой с окружностью (если, конечно, такие точки вообще существуют).

000537.jpeg

Рис. 92

17.7. Для построения биссектрисы угла А треугольника ABC перегнем лист бумаги так, чтобы сторона АВ пошла по стороне АС. Тогда линия сгиба будет осью симметрии угла ВАС, т. е. его биссектрисой. Высота проводится тем же методом, что и в решении задачи 17.3, где опускается перпендикуляр из данной точки (вершины треугольника) к данной прямой (противолежащей стороне треугольника). Для проведения медианы к стороне ВС данного треугольника сначала найдем середину этой стороны (см. задачу 17.2), а затем соединим ее линией сгиба с вершиной А треугольника ABC. Центр вписанной окружности лежит на пересечении биссектрис каких-нибудь двух углов треугольника. Для нахождения центра описанной окружности достаточно провести серединные перпендикуляры к каким-нибудь двум сторонам треугольника (см. задачи 17.3) и определить точку их пересечения.

17.8. Примерно по середине листа проведем две перпендикулярные прямые (линии сгиба) EF и GH, параллельные сторонам будущего прямоугольника ABCD и пересекающиеся в точке О (рис. 93). Приложим сверху край EF листа, перегнутого предварительно по прямой EF, к той части исходного листа, которая содержит точку G, и проследим, чтобы точка О оказалась прижатой к лучу OG. Тогда, перегнув вдоль листа нижнюю часть листа, мы получим прямую AD. Аналогично с другой стороны от прямой EF получаем прямую ВС. Приложив также край GH листа, перегнутого по прямой GH, к той части исходного листа, которая содержит точку Е, и проследив, чтобы точка О оказалась прижатой к лучу ОЕ и чтобы линия GH пересекла обе построенные ранее линии AD и СВУ мы получим сторону АВ прямоугольника. Аналогично получаем противоположную его сторону CD. Для доказательства того, что построенный четырехугольник действительно является прямоугольником, достаточно проверить, что прямые АВ и CD параллельны прямой EF, а прямые AD и ВС - прямой GH.

000538.jpeg

Рис. 93

17.9. Перегнем прямоугольный лист бумаги по биссектрисе одного из его углов BAD, т. е. так, чтобы сторона АВ прямоугольника ABCD пошла по соседней с ней стороне AD, а линия сгиба пересекла какую-то третью сторону в точке Е (рис. 94). Пусть меньшая сторона АВ оказалась наложенной сверху на большую сторону AD. Тогда, перегнув нижнюю часть листа вдоль линии BE, мы получим квадрат ABEF. Действительно, в четырехугольнике ABEF выполнены равенства ∠ ABE = ∠ BAF = 90°, АВ = ВЕ (ибо ∠ ВАЕ = 45° = ∠ AEB), AB = AF, BE = FE, следовательно, все стороны этого четырехугольника равны, а углы прямые.

000539.jpeg

Рис. 94

17.10. Перегнем данный прямоугольник ABCD по серединному перпендикуляру EF, скажем, к меньшей стороне AD (рис. 95). Не разворачивая лист, перегнем его еще раз по любой линии, пересекающей отрезки АЕ и EF. Тогда после разворачивания последняя линия сгиба, которая пройдет как по прямоугольнику AEFB, так и по прямоугольнику DEFC, вместе с прямой AD образует равнобедренный треугольник (в силу его симметрии относительно прямой EF).

000540.jpeg

Рис. 95

Для построения равностороннего треугольника перегнем прямоугольник ABCD по линии, проходящей через вершину А, так, чтобы точка D совместилась с какой-нибудь точкой G отрезка EF. Тогда треугольник ADG будет равносторонним, поскольку в силу построения имеем AD = AG = GD.

17.11. Проведем серединный перпендикуляр к стороне AD квадрата ABCD, а затем перегнем квадрат по линии, проходящей через точку А, так, чтобы точка В совместилась с какой-нибудь точкой G проведенного перпендикуляра (рис. 96). Тогда линия сгиба пересечет сторону ВС в точке Е, а если перегнуть квадрат по диагонали АС, то точка Е совместится с точкой F. Докажем, что треугольник AEF равносторонний. Действительно, так как треугольник ADG равносторонний (ибо DG = AG = AB = AD), то ∠ DAG = 60°, ∠ BAG = 90° - 60° = 30°, ∠ DAF = ∠ BAE = ∠GAE = 15°, ∠ FAE = 90° - 15° - 15° = 60° и, кроме того, AF = AE.

000541.jpeg

Рис. 96

17.12. Проведя две биссектрисы равностороннего треугольника ABC (см. задачу 17.7), мы найдем его центр О. Загнем углы треугольника так, чтобы их вершины совместились с точкой О (рис. 97). Тогда полученная фигура и будет представлять собой правильный шестиугольник. В самом деле, все шесть треугольников, из которых составлен шестиугольник, являются равносторонними (их равнобедренность вытекает из симметрии всей фигуры относительно биссектрис исходного треугольника ABC, а равенство каждого из углов по 60° следует из равенства 60° каждого из углов при вершинах А, В, С и равенства друг другу трех оставшихся углов с вершинами в точке О).

000542.jpeg

Рис. 97

17.13. Проведем диагонали квадрата ABCD, серединный перпендикуляр к стороне AD и биссектрисы углов между диагоналями и этим перпендикуляром. Загнем углы квадрата так, чтобы линии сгиба проходили через точки пересечения биссектрис со сторонами квадрата, а вершины углов А, В, С, D оказались на соответствующих диагоналях (рис. 98). Тогда полученная фигура и будет представлять собой правильный восьмиугольник. В самом деле, все углы, под которыми видны из центра квадрата стороны восьмиугольника, равны между собой (каждый такой угол составлен из двух углов между проведенными выше биссектрисой и диагональю), а кроме того, равны и все расстояния от вершин восьмиугольника до центра квадрата (равные длине той же биссектрисы).

000543.jpeg

Рис. 98

17.14. Проведем высоту AD треугольника ABC, опущенную из вершины А его наибольшего угла. Теперь загнем все три угла треугольника так, чтобы их вершины совместились с точкой D (рис. 99). Тогда углы при вершинах треугольника без наложений друг на друга составят в сумме развернутый угол с вершиной D, равный 180°.

000544.jpeg

Рис. 99

Для доказательства этого заметим, что линия сгиба EF, будучи серединным перпендикуляром к высоте AD, является средней линией треугольника ABC. Поэтому имеют место равенства DE = AE = BE, DF = AF = CF, т. е. треугольники BED, CFD равнобедренные и

000545.jpeg

а значит, произведенные выше перегибания этих треугольников действительно приведут к указанным совмещениям.

17.15. Один из возможных способов перегибания страницы изображен на рис. 100.

000546.jpeg

Рис. 100

17.16. После каждого перегибания периметр фигуры не увеличивается. Действительно, при наложении одной части фигуры на другую появляется новая часть периметра, а именно линия сгиба. Однако другая часть периметра исчезает, т. е. оказывается внутренней для полученной фигуры. Исчезающая часть периметра содержит ломаную, соединяющую концы линии сгиба, или несколько таких ломаных, если линия сгиба не сплошная (рис. 101). Таким образом, добавляемая часть периметра никогда не превосходит его теряющейся части, поэтому периметр не увеличивается при однократном и, стало быть, при многократном складывании бумажного многоугольника.


Перейти на страницу:
Изменить размер шрифта: