000547.jpeg

Рис. 101

17.17. Пусть полоска имеет ровный торец АВ, перпендикулярный краю полоски (рис. 102). Перегнув ее по биссектрисе угла А, мы получим квадрат ABA1В1. Перегнув оставшуюся часть полоски с торцом A1B1 по биссектрисе угла А1, мы получим квадрат А1В1А2В2.

000548.jpeg

Рис. 102

Действуя в таком же духе и далее, мы найдем точки А3, В3, А4, В4, А5, В5. Теперь обрежем полоску по линиям AА1 и А4А5 и получим параллелограмм 1А5А4, который можно сложить так, как показано на рис. 103 (полученный при этом квадрат АА1А2А3 даже не будет распадаться).

000549.jpeg

Рис. 103

17.18. Пусть полоска имеет ровный торец АВ, перпендикулярный краю АЕ полоски (рис. 104). Проведем серединный перпендикуляр к отрезку АВ и перегнем полоску по некоторой линии АС так, чтобы точка В совместилась с какой-то точкой D серединного перпендикуляра. Тогда треугольник ABD равносторонний (ибо AB = AD = BD) откуда ∠ BAD = 60° и ∠ CAE = ∠ DAE + ∠ CAD = (90° - ∠ BAD) + ∠ BAD = 60°. Перегибая полоску по перпендикуляру к краю АЕ, проходящему через точку С, получаем равносторонний треугольник ACB1. Перегибая полоску по перпендикуляру к краю АЕ, проходящему через точку B1, получаем равносторонний треугольник СВ1А1.

000550.jpeg

Рис. 104

Действуя в таком же духе и далее, мы найдем точки С1, В2, A2, С2, В3, A3, С3. Теперь отрежем полоску по линиям AС, A3С3 и получим трапецию АСА3С3, которую можно сложить так, как показано на рис. 105 (полученный при этом шестиугольник ACA1C1A2C2 даже не будет распадаться).

000551.jpeg

Рис. 105

17.19. Заметим, что при перегибании бумажной полоски с параллельными краями по некоторой поперечной линии АЕ внутренние накрест лежащие равные углы AED и EAF (рис. 106) превращаются в односторонние, но по-прежнему равные углы AED и ЕАВ. По этой причине имеем равенства

000552.jpeg

000553.jpeg

Рис. 106

В силу параллельности прямых АС и ED, ЕС и АВ, AD и ВС, BE и CD заключаем, что четырехугольники ABCD, АВСЕ, ACDE и BCDE являются трапециями, причем две последние равнобедренными, а четырехугольник BCDO является параллелограммом с одинаковыми высотами (равными ширине полоски), т. е. ромбом. Поэтому имеем

000554.jpeg

откуда получаем ∠ AED = ∠ CDE, AE = CD, а значит, все стороны пятиугольника ABCDE равны между собой и все его углы одинаковы. Мы доказали, что пятиугольник, образующийся в узле бумажной полоски, правильный.


Перейти на страницу:
Изменить размер шрифта: