19.48. Например, годится следующая формула:

000621.jpeg

19.49. Достаточно сделать 5 поездок, так как за каждую поездку, кроме последней, можно увезти не менее 2 т. Меньше 5 поездок может не хватить, например, если весь груз расфасовать поровну в 13 ящиков.

19.50. Когда весы находятся в равновесии, отношение весов грузов, лежащих на чашках, есть фиксированная (обратная отношению плеч) величина а. Поэтому если отвесить по 1 кг сахара на каждой чашке весов, то на самом деле будет получено а + 1/а кг, что при а≠1 будет больше 2 кг. Чтобы отвесить ровно 2 кг сахара, достаточно весы с килограммовой гирей на одной чашке уравновесить любым грузом (например, тем же песком), а затем снять гирю и уравновесить весы сахаром. Мы получим ровно 1 кг сахара и аналогично еще 1 кг.

19.51. Если прикрепить гирю к одному концу линейки, а взвешиваемый груз к другому (рис. 156) и уравновесить

эту систему, правильно подобрав на линейке точку опоры, то отношение х:y расстояний по линейке от опоры до гири и до груза будет равно отношению весов груза и гири соответственно. Кстати, можно проградуировать линейку, написав возле нескольких возможных положений опоры заранее подсчитанные соответствующие веса груза.

000622.jpeg

Рис. 156

19.52. Запомнив время на стенных часах, сходите и узнайте правильное время. Вернувшись домой, определите по стенным часам время вашего отсутствия и прибавьте половину этого времени к тому времени, которое вы видели на правильных часах. Это время и нужно установить на ваших часах.

19.53. Время t работы будет наименьшим, если обе машинистки закончат печатать одновременно, т. е. если первая машинистка напечатает t/6 листов, а вторая t/10 листов. Поэтому работу между ними нужно заранее распределить в пропорции 000624.jpeg

19.54. Если шины на передних колесах стираются за n км пути, а задние - за m км, то перестановка местами передних колес с задними после прохождения 000623.jpeg км пути приводит к одновременному стиранию всех колес и максимально удлиняет пробег автомобиля без замены шин.

19.55. В результате внедрения всех трех изобретений производственные затраты могут составить минимум 000625.jpeg прежних затрат. Поэтому они уменьшатся в лучшем случае на 73% (это если сами изобретения оказывают влияние на процесс производства не зависимым друг от друга образом).

19.56. Постоянно на лугу могут пастись максимум 15 коров. Если обозначить через х полное количество травы на лугу, а через y и z количества травы, вырастающей ежедневно на лугу и съедаемой одной коровой за один день соответственно, то будет справедлива система

000626.jpeg

откуда 15z = y. Таким образом, трава на лугу растет с той же скоростью, с какой ее поедают 15 коров. Проверка показывает, что 16 коров съедят всю траву за 60 дней.

19.57. Парашютист мог обойти стену, все время держась за нее, скажем, левой рукой и замеряя углы поворотов, которые ему приходилось при этом делать. Подсчитав в конце алгебраическую сумму всех этих углов (со знаком плюс, если поворот был левым, и со знаком минус, если правым), он мог воспользоваться следующим фактом: сумма углов должна равняться либо -360°, если он находится внутри участка, либо 360°, если снаружи.

19.58. Если поворачивать табуретку в "плоскости" пола, то обязательно наступит такой момент, когда все 4 ножки табуретки будут касаться пола.

19.59. На рис. 157 показано, как, положив кирпич на угол стола, а затем передвинув его параллельно краю стола на длину соответствующего ребра кирпича, можно получить две точки (угол стола и вершина кирпича), расстояние между которыми как раз равно длине главной диагонали кирпича.

000627.jpeg

Рис. 157

19.60. Намотаем проволоку в один слой, например, на саму линейку так, чтобы соседние витки проволоки были плотно прижаты друг к другу (рис. 158). Тогда, поделив ширину полученного слоя на количество витков, мы получим толщину одного витка, которая совпадает с диаметром проволоки.

000628.jpeg

Рис. 158

19.61. Измерим внешний радиус R и внутренний радиус r рулона (рис. 159). Затем отмотаем такую часть ленты длиною l, чтобы при этом ощутимо уменьшился внешний радиус рулона. Если он уменьшился на d, то длина ленты приблизительно равна

000629.jpeg

так как длина ленты в рулоне пропорциональна площади его поперечного сечения.

000630.jpeg

Рис. 159

19.62. Если на осколке сохранились хотя бы три точки края пластинки, то можно перенести их на бумагу и построить центр О окружности, проходящей через эти три точки (рис. 160). Радиус R этой окружности совпадает с радиусом пластинки. Впрочем, его можно и посчитать, измерив, скажем, попарные расстояния a, b и с между тремя указанными точками и воспользовавшись формулами

000631.jpeg

000632.jpeg

Рис. 160

19.63. Измерим длину l большой окружности шара, образовав из измерительной ленты наименьшее кольцо, через которое проходит шар. Тогда объем шара будет равен l3/(6π2).

19.64. Если обозначить через H высоту маяка, а через R радиус Земли (R ≈ 6400 км), то искомое расстояние будет равно (рис. 161)

000633.jpeg

000634.jpeg

Рис. 161

При H = 125 м имеем S ≈ 40 км.

19.65. Возьмем две точки A и В на поверхности бильярдного шара и проведем на нем дуги равных радиусов с центрами в этих точках. В пересечении дуг получатся точки С и D, аналогично построим точку Е (рис. 162). Теперь, замерив циркулем длины отрезков CD, DE и СЕ, мы перенесем эти точки на бумагу с сохранением указанных длин и построим на бумаге центр О окружности, описанной вокруг получившегося треугольника. Радиус шара как раз и будет равен радиусу этой окружности.

000635.jpeg

Рис. 162

19.66. Из всех прямоугольников фиксированного периметра наибольшую площадь имеет квадрат, так как величина площади прямоугольника размером а*(з - а) достигает наибольшего значения 000636.jpeg при а = p - а.

19.67. Наибольшую площадь будет иметь палисадник, представляющий собой половину квадратного участка, т. е. имеющий две короткие стороны, равные половине длинной стороны, противолежащей стене дома.

19.68. Наибольший объем будет иметь коробка, высота h которой равна четверти стороны основания, поскольку учетверенный объем 4h(a - 2h)2 коробки, сделанной из квадрата со стороной а, достигает наибольшего значения

000637.jpeg

при 4h = a - 2h.

19.69. Если х, y и z - соответственно высота, ширина и длина коробка объемом V, то расход материала на его изготовление пропорционален величине 2xy + 3yz + 4xz, которая принимает наименьшее значение

000638.jpeg

при 2xy = 3yz = 4xz, т. е. когда х:y:z = 3:4:2.

19.70. Кратчайший путь от лампочки А до выключателя В будет равен 40 м и пройдет он не только по потолку и торцевым стенкам (такой путь АВ1 на развертке, изображенной на рис. 163, имеет длину 42 м), а также и по боковой стене (соответствующий путь на рис. 163 проходит по отрезку АВ2).

000639.jpeg

Рис. 163

19.71. Кратчайший путь от лампочки А до выключателя В имеет длину 5 м и показан на развертке бункера (рис. 164).

000640.jpeg

Рис. 164

19.72. Если разместить развертку пяти граней куба так, как изображено на рис. 165, то в четырех углах квадратной салфетки останутся четыре треугольника, которых будет достаточно для покрытия шестой грани куба (подсчет показывает, что нарисованный "крест" действительно помещается в квадрате и даже оставляет зазор шириной 000641.jpeg

000643.jpeg

Рис. 165

19.73. Одна из вершин прямоугольника должна совпадать с серединой гипотенузы.

19.74. Через точку А, расположенную от вершины В угла вдвое дальше, чем данная точка С (рис. 166), проведем прямую, параллельную стороне угла. Она пересечет другую сторону угла в точке D, через которую и проходит искомая прямая.

000642.jpeg

Рис. 166

19.75. Диаметром наименьшего круга, содержащего указанный треугольник, является наибольшая сторона этого тупоугольного треугольника, равная 4.

19.76. Крепче держится треугольный гвоздь, поскольку соприкасается с окружающей его древесиной по наибольшей поверхности: при равных площадях сечения периметр значения будет наибольшим у треугольника и наименьшим круга (отсюда, кстати, следует, что круглый гвоздь держится слабее любых других гвоздей).

19.77. Частей не могло быть 66, но могло быть 67, так при каждом измельчении листа число кусочков увеличивалось на 3, а вначале это число было равно 1.

19.78. На рис. 167 показано, как разрезать квадрат на 4, 6 или 8 квадратов. Деля любую из полученных частей на 4 квадрата, мы будем увеличивать их число на 3. Таким образом, из исходного квадрата можно получить разрезанием как 4 квадрата, так и любое их число, большее 5.

000644.jpeg

Рис. 167

19.79. Число разломов не зависит от порядка, в котором они производятся. Это число будет на единицу меньше, чем количество квадратных долек, составляющих плитку шоколада, поскольку после первого разлома образуются два куска шоколада, после второго-три, после третьего-четыре и т. д.

19.80. Достаточно двух цветов. Это доказывается индукцией по числу прямых линий, делящих страну на области.

19.81. Сложив лист пополам, разрежем его так, как показано на рис. 168.

000645.jpeg

Рис. 168

19.82. Разобьем имеющиеся треугольники на пары и сложим из них одинаковые параллелограммы, а затем замостим всю плоскость такими параллелограммами (рис. 169).

000646.jpeg

Рис. 169

19.83. Для паркета годятся любые одинаковые четырехугольники: сначала замостим всю плоскость параллелограммами, построенными на диагоналях данного четырехугольника как на сторонах, а затем в каждый параллелограмм поместим по данному четырехугольнику (на рис. 170 они заштрихованы), а остальные части плоскости автоматически окажутся такими же, но повернутыми четырехугольниками.

000647.jpeg

Рис. 170

19.84. Годится любая прямая, проходящая через точку пересечения диагоналей прямоугольника.

19.85. Достаточно провести разрез через центры симметрии прямоугольника и параллелограмма.

19.86. Достаточно, например, разрезать треугольник на три части, на которые его разбивают перпендикуляры к сторонам, опущенные из центра вписанной окружности (рис. 171).


Перейти на страницу:
Изменить размер шрифта: