Свойства новых аккумуляторов определяют их основные области применения. Прежде всего это стационарные промышленные установки, где не так важен вес устройства, но необходимы большие мощности и длительный срок службы. Во вторую очередь это питание электромобилей, где также нужны большие токи и долговечность. А в будущем, если удастся повысить емкость аккумуляторов, они смогут побороться и за рынок мобильных устройств. ГА
Новый метод "запоминания" световых импульсов в виде звуковых колебаний оптических волокон предложили физики из Университета Дьюка. Метод работает на всех оптических частотах при комнатной температуре на коммерчески доступном оборудовании и обещает решить проблемы хранения пакетов данных в оптических телекоммуникационных сетях.
Если оптическая сеть сильно загружена, в ней неизбежны коллизии, при которых два пакета данных в виде набора световых импульсов могут прийти в один узел одновременно. В идеале один из них надо бы чуть придержать, чтобы затем отправить вслед за первым. Сегодня для этого приходится преобразовывать световые импульсы в электрические, сохранять их в быстрой памяти, а затем вновь конвертировать в свет. Это сложно, дорого, требует много энергии и сильно тормозит передачу данных.
Новый метод, в принципе, позволяет придерживать световые импульсы, обходясь без электроники. Он основан на так называемом вынужденном рассеянии Мандельштама —Бриллюэна, при котором свет активно взаимодействует со звуковыми колебаниями в материале. В демонстрационных экспериментах ученые послали в обычное оптическое волокно два последовательных импульса "данных" длительностью по две наносекунды. Им навстречу с другого конца волокна был послан мощный "записывающий" лазерный импульс длительностью полторы наносекунды. Его частота чуть отличалась от частоты импульсов данных как раз на столько, чтобы разность частот попадала в звуковой диапазон. В результате нелинейного взаимодействия этих импульсов и материала в оптическом волокне возбудились высокочастотные звуковые колебания. Эти колебания быстро затухают, но если спустя несколько наносекунд в волокно послать еще один мощный "считывающий" лазерный импульс, то первоначальную пару импульсов "данных" удается восстановить из звуковых колебаний в результате обратного нелинейного процесса. В экспериментах удавалось восстановить треть начальной интенсивности спустя 4 наносекунды и два процента спустя 12 наносекунд. Этого времени хранения информации уже достаточно для некоторых приложений, а полностью восстановить амплитуду первоначальных импульсов с помощью оптического усилителя не составляет проблемы.
Авторы уверены, что таким образом можно будет запомнить не только пару импульсов, а целый коммуникационный пакет. А поскольку они использовали лишь стандартное оборудование, их метод гораздо ближе к практике, чем все альтернативные разработки. К сожалению, прежде чем такие запоминающие волокна можно будет встроить в телекоммуникационные сети, предстоит еще хорошо поработать. Необходимая мощность лазера для записи и считывания информации чересчур велика, а время хранения импульсов хорошо бы увеличить до секунды. Но эти проблемы ученые надеются решить, изготовив волокна из более подходящего материала. ГА
Физики из Технологического университета Лулео (Швеция) опубликовали любопытную статью, в которой сомнительная идея о существовании преонов превращается во вполне проверяемую рабочую гипотезу.
Согласно Стандартной модели физики элементарных частиц, все вещество во Вселенной состоит из шести кварков и шести лептонов. Однако около тридцати лет назад некоторые теоретики решили, что даже дюжина — слишком много. То есть лептоны и кварки, в свою очередь, состоят из более мелких частиц, преонов. Достаточно, например, всего трех. С тех пор идея существования преонов пользовалась у теоретиков то большей, то меньшей популярностью, но по сей день ни одна из разнообразных преонных теорий не вела к экспериментально проверяемым фактам. Слишком много энергии потребовалось бы, чтобы расколотить кварк на преоны, и такого уровня нельзя достичь ни на одном из современных ускорителей. А то, что нельзя проверить, уже выходит за рамки науки.
Но два года тому назад шведские теоретики решили посмотреть, что будет, если из преонов образовать звезды. Если взять канонический сценарий Большого взрыва, в котором, согласно современной физической вере, родилась наша Вселенная, мы увидим, что сначала были лептоны и кварки. Кварки, остывая, объединились в протоны и нейтроны, те, еще подостыв и объединившись с электронами, образовали атомы, и так далее. А значит, не будет большой ересью предположить, что еще до лептонов и кварков были преоны, и часть из них из-за флуктуаций не стала обычной материей, а образовала чисто преонные звезды. Обсуждают же нейтронные звезды и звезды из кварков, чем же преоны хуже?
Прикинули, какими могут быть преонные звезды. Оказалось, что их масса должна быть значительно меньше, чем у обычных звезд, — не больше сотни земных масс, но плотность гораздо выше, чем у нейтронных звезд и даже звезд из кварков. Нижнего предела массы вроде бы нет, но ученые решили, что более вероятны преонные звезды размером с горошину и с массой чуть меньше, чем у Луны. Такой горох, редко рассеянный по пространству, слишком мал, чтобы его наблюдать непосредственно, зато он прекрасный кандидат на роль темной материи.
И эти умозаключения так бы и остались очередной теоретической сказкой, если бы теперь авторы не объяснили, как такой преонный горох обнаружить. Оказывается, подобные объекты будут хорошо работать как гравитационные линзы. Гравитационное линзирование — отклонение лучей света, проходящих мимо массивных объектов, — давно известно астрофизикам. Но преонные звезды будут хорошо взаимодействовать не со светом, а с гамма-квантами, которые время от времени рождаются в различных вселенских катастрофах вроде взрывов сверхновых. Правда, преонный горох не усилит гамма-сигнал, как обычная гравитационная линза, зато оставит характерный след в его спектре.