Вот так «в жизнь» конструкторов вычислительной техники вошла нелинейная динамика…
- Я бы не сказал, что конструкторы сильно этому обрадовались и сразу ухватились за эту возможность. Они же не физики, а инженеры…
А вот физики за сравнительно короткое время нашли множество разнообразных физических сред, которые при определенных условиях порождают и поддерживают существование устойчивых неоднородностей - своего рода «объектов», способных перемещаться в пределах среды, взаимодействовать друг с другом и структурно эволюционировать.
Разновидностями этих динамических неоднородностей, в частности, являются устойчивые образования, напоминающие стоячие волны, но имеющие другую физику, - солитоны и автосолитоны. Так, например, в оптических резонаторах Фабри-Перо, построенных на основе ряда нелинейных сред, при условии их возбуждения внешним источником энергии, удалось получить так называемые дифракционные автосолитоны - устойчивые пространственные области высокой плотности электромагнитного поля[См. например: Розанов Н.Н., Ходова Г.В., Письмо в журнал «Оптика и спектроскопия», 1988, Т. 65]. Нелинейность среды «отвечает» за изменение коэффициента поглощения или показателя преломления в местах дифракционных максимумов поля, после чего возникающие периодически расположенные области с измененными оптическими свойствами начинают выполнять роль распределенного резонатора, выделяя и усиливая те пространственные компоненты поля, которые порождают автосолитон.
Успех этих экспериментов открыл принципиальную возможность строить оптические вычислители на основе динамических дифракционных структур (тех же автосолитонов!), обладающих способностью хранить в своей структуре как информацию о входных воздействиях, так и о своих предыдущих состояниях. Еще раз подчеркну: такой вычислитель «конструктивно» представляет собой не устройство, а процесс - динамически поддерживаемую суперпозицию явлений возбуждения и затухания в нелинейной оптической среде. Физики знают обо всех этих вещах еще с середины прошлого века, но они же физики, а не инженеры…
Много ли сегодня мы знаем физических процессов, на основе которых можно пытаться сконструировать принципиально новые устройства обработки данных?
- Очень много: это плазма высокочастотного газового разряда[Кадомцев Б.Б., «Коллективные явления в плазме». - М.:, Наука, 1976] (порождает статические или подвижные области ионизации и излучения - страты); в сверхпроводниках[Гуревич А.В., Минц Р.Г., «Тепловые автоволны в нормальных металлах и сверхпроводниках». - М.: изд. ИВТ АН СССР, 1987] наблюдаются автосолитоны, представляющие собой области с активным сопротивлением, окруженные сверхпроводящими «оболочками»; в магнитных материалах обнаружены бегущие магнитные домены и вихревые структуры (линии Блоха и ряд других).
В полупроводниках и полупроводниковых гетероструктурах[Белецкий Н.Н., Светличный В.М. и др. «Электромагнитные явления СВЧ-диапазона в неоднородных полупроводниковых структурах». - Киев: Наукова думка, 1991] исследованы эффекты возбуждения незатухающих диссипативных неустойчивостей в электронно-дырочной плазме, эффекты взаимовлияния многочисленных коллективных возбуждений - так называемых квазичастиц, распространяющихся в кристаллической решетке (акустических и оптических фононов, экситонов, магнонов и др.). Были получены удивительные результаты, касающиеся динамики магнитоплазменных волн и возбуждений в полупроводниках.
Богатейший «улов» на всевозможные нелинейности приносят в последние годы исследования многокомпонентных полупроводников типа «твердые растворы» (например, теллурида кадмия в теллуриде ртути). Особенность этих веществ в том, что ширину запрещенной зоны в них можно в широких пределах и плавно регулировать, изменяя соотношение компонентов «раствора». Управляя распределением состава в объеме образца на стадии изготовления, мы можем получать так называемые сверхрешетки и варизонные структуры[В варизонных структурах молярный состав материала плавно, по заранее рассчитанному закону меняется вдоль заданного направления. Это приводит, в частности, к тому, что такие фундаментальные параметры, как ширина запрещенной зоны, эффективные массы и время жизни носителей тока, начинают зависеть от пространственных координат], в которых начинают проявляться принципиально новые физические эффекты.
Этот список чрезвычайно велик. Он означает, что в нашем распоряжении находится обширный выбор явлений, позволяющих синтезировать не только оптические, но и акустические, электродинамические, тепловые, электронные, ионные, фононные и много других типов вычислительных сред - буквально «на все случаи жизни». Но тут имеется серьезная трудность…
Догадываюсь: конструкторов нужно учить физике?
- Это было бы полдела… Трудность связана с необходимостью управлять протеканием в среде тех процессов, которые должны осуществить требуемую обработку подводимой информации. По существу, перед нами стоит задача - научиться «программировать» для столь необычных компьютеров, каковыми являются неравновесные процессы в нелинейных средах.
А как вообще это делается? Существует ли какая-то теория такого необычного «программирования»?
- Математическое описание поведения таких физических сред[Рекомендую, например, замечательную книгу И. Пригожина и И. Стенгерс «Время, хаос, квант. К решению парадокса времени». - М.:, «Эдиториал УРСС», 2001] основано на исследовании траекторий изображающих точек в фазовом пространстве системы.
Было установлено, что каждой устойчивой динамической неоднородности в среде (например, автосолитону) соответствует устойчивая замкнутая траектория - цикл в конфигурационном пространстве, к которому «стягиваются» траектории, пролегающие в некоторой «близости» от него. Такой цикл получил название «аттрактор». Конфигурационное пространство многомерно, поэтому аттракторы в нем не всегда выглядят точками или линиями, но чаще всего являются поверхностями или объемами. Обнаружены и вовсе экзотические аттракторы[Их так и называют - «странные аттракторы»] - не просто многомерные, но обладающие дробными размерностями. Они являются фрактальными объектами в конфигурационном пространстве. В системах со странными аттракторами возможно возникновение чрезвычайно сложных процессов. Фактически эти аттракторы способны порождать такие реакции системы, которые нельзя ни предсказать, ни воспроизвести повторением любого набора начальных возмущений.