«Серия подбрасываний монетки может иметь высокую информационную составляющую — но мало пользы. Эфемерида, дающая информацию о положении Луны и планет на каждый день в течение столетий, содержит не больше информации, чем уравнения движения и изначальные условия, на основе которых она была высчитана — но она позволяет владельцу не трудиться над тем, чтобы самому пересчитывать эти положения, — написал Чарльз Беннетт в 1985 году, когда представлял свои критерии смысла. — Ценность сообщения, таким образом, скорее всего, содержится не в его информации (его совершенно непредсказуемой части) и не в его очевидной избыточности (словесные повторения, неравная частота цифр), но скорее в том, что может быть названо его скрытой избыточностью — это части, которые можно считать предсказуемыми лишь с натяжкой. Другими словами, ценность сообщения представляет собой объем математической или другой работы, которая уже выполнена тем, кто его послал, который принимающей стороне не придется повторять».

Логическая глубина. Это название критерия Беннетта: логическая глубина сообщения — это мера его значения, его ценности. Чем больше сложностей у отправителя, тем больше логическая глубина сообщения. Чем больше «вычислительного времени» он потратил — с помощью своей головы или компьютера — тем большей будет ценность сообщения, так как в этом случае отправитель избавляет получателя от необходимости самому выполнять эту работу.

Больше или меньше времени придется в результате потратить — не столь важно (для любого, кроме телефонной компании). Важно то, сколько времени было потрачено на создание сообщения для передачи.

В 1985 году Беннет предположил, что сложность может быть измерена как логическая глубина. Она также может быть использована как критерий, с помощью которого мы сможем определить, сколько смысла содержится в сообщении. Сложность нужно измерять не продолжительностью сообщения, а той работой, которая предварительно была выполнена. Смысл не возникает из информации в сообщении — он возникает из информации, которая была отсеяна в процессе формулирования сообщения, которое имеет определенную информационную составляющую.

Важно не то, чтобы сказать, как можно больше. Смысл в объеме размышлений перед тем, чтобы что-то сказать.

«Если говорить неофициально, логическая глубина — это количество шагов дедукции, или причинная связь, которая соединяет вещь с ее вероятным источником», — пишет Беннет. Но можно дать и более точное определение.

Мы начинаем с алгоритмической информационной теории: сообщение можно сжать до самой возможной короткой формы, до самого короткого описания, которое позволит машине Тьюригна сформулировать сообщение. Самая короткая форма — это мера действительного количества информации, присутствующей в сообщении. Но машине Тьюринга потребуется определенное время, чтобы сформулировать само сообщение, базирующееся на самом коротком возможном описании. К примеру, когда законы, управляющие движением планет, нужно перевести в таблицу солнечных затмений. Сжатую информацию нужно распаковать. Это требует времени. Это время и будет измеряться как логическая глубина.

There is a bus every seven minutes. The buses depart from the bus station twelve minutes before they get to my bus stop. The first bus leaves at five. It is now half past six. When is the next bus? At 17:54.

Каждые 7 минут приходит автобус. Автобусы отъезжают со станции за 12 минут до того, как они доходят до моей остановки. Первый автобус отправляется в пять. Сейчас половина седьмого. Когда будет следующий автобус? В 17:34.

Информационная составляющая «17:34» не очень велика — сама по себе. Но время вычисления довольно значительно, особенно если я только выхожу из двери. Кто бы ни поработал уже над вычислением результата, может помочь, сообщив его другому человеку. Эта помощь сэкономит получателю определенное вычислительное время — она содержит смысл.

Логическая глубина — это мера процесса, который ведет к определенному количеству информации, а не к количеству информации, которая была произведена и может быть передана. Сложность, или смысл — это мера процесса производства, а не продукта, скорее рабочего времени, а не результата работы, информации, которая была отсеяна, а не оставшейся информации.

Понятие логической глубины, следовательно, будет перпендикулярно информационному содержанию. Все обладает номинальной стоимостью в отношении информационного содержания. Но номинальная стоимость не всегда может многое нам сообщить о глубине — насколько сложно было ее создавать.

За данным сообщением или продуктом может стоять огромное количество работы или мыслительных усилий. Тем не менее они могут оставаться незамеченными. Сложно заставить вещи выглядеть простыми. Ясность требует глубины.

С другой стороны, ерунда не отличается глубиной: вздор — это просто беспорядочная пустая болтовня, которая не может быть выражена более кратко, так как в ней нет порядка. Следовательно, не существует разницы между самой возможно короткой программой для его повторения и самим этим вздором. Так что не потребуется никакого вычислительного времени — только то время, которое потребуется, чтобы произнести этот вздор.

У обычного беспорядка тоже нет глубины, так как беспорядок нельзя описать короче, чем он сам себя описывает, просто будучи беспорядком.

Суть предложения Беннетта заключается в том, что любые осмысленные или сложные количества можно описать в более короткой форме, хотя это и необязательно: они могут быть сжаты в виде краткого рецепта.

Живой организм можно определить по нескольким генам — но, чтобы это сделать, потребуется время. Великую оперу можно написать, используя всего несколько нот — но, чтобы ее поставить, потребуется много работы. Годичную таблицу фаз луны можно высчитать по простому алгоритму. Но на это уйдет время.

Беспорядок, вздор и то, что просто срывается с языка, нельзя, однако, описать более кратко. Самая короткая программа будет равняться самой этой болтовне.

Понятие Беннетта указывает, что сложность — это нечто, для возникновения чего требуется время. Время, за которое создается порядок. Время, за которое отсеивается информация, чтобы пришлось меньше ее обрабатывать. Вычислительное время на компьютере или эволюционное время на Земле.

Термодинамика, к примеру, позволяет живым существам само организовываться. Им, безусловно, приходится перерабатывать большое количество пищи (тем самым экспортируя энтропию), но зато они могут развиваться и становиться настолько сложными, что обучаются читать книги. Но это происходит медленно: чтобы живые существа само организовались, требуется время. Биологическая эволюция была процессом, который занял много времени — и для того, чтобы человек вырос достаточно большим для того, чтобы читать книги, тоже нужно время. Беннетт сформулировал закон «медленного роста» для сложных систем. Для того, чтобы вещества организовались в живые существа, к примеру, требуется время. Много времени. Но это возможно. На земле это произошло в течение нескольких миллиардов лет.

С другой стороны, смерть и разрушение могут происходить мгновенно — и при этом почти без затрат времени возникают большие объемы информации. Мы можем создать огромное количество информации, подбрасывая монетки или разбивая на кухне тарелки. Чтобы описать результат, потребуется много информации. Но это не слишком интересно — в этом нет глубины.

Понятие логической глубины является весьма значительным. Оно подразумевает, что для понимания сложности главным будет не номинальная стоимость информации — а предыдущий процесс отсеивания информации. В информации важно то, что раньше присутствовало — а теперь отсутствует.

Большинство того, что мы считаем стоящим обсуждения, включает в себя очень запутанные вещи и мысли: много глубины, но, возможно, не так много будет видно на поверхности. В процессе мы отсеиваем большое количество информации, и остаться ее может не так много. Структура с богатым прошлым. Интересными вещами в жизни могут оказаться вовсе не те, которые приходится долго описывать и объяснять, а те, для постижения которых потребовался долгий опыт.

Но в понятии логической глубины есть и серьезная проблема. Она предполагает: то, о чем мы говорим, может быть приравнено к результату вычислений. Это может иметь смысл по отношению ко многим материальным величинам, как живым, так и неживым. Многие физические и биологические системы могут быть поняты как результат последовательности законов, которые действуют через процессы, описанные в этих законах. Другими словами, на компьютере мы можем симулировать эволюцию системы. Затем мы можем задать вопрос: сколько времени потребовалось на вычисления. Чем больше времени, тем больше глубина системы.

Биологическое существо является результатом очень длительных эволюционных вычислений. Изобретательные научные законы могут быть результатом очень длительных умственных усилий. «Да» или «нет» могут быть результатом огромного количества сложного опыта.

Но мир не состоит целиком из вычислений, не говоря уже о машинах Тьюринга. Самые интересные вычисления в мире происходят в «компьютере», который работает совершенно по-другому, нежели машина Тьюринга — в мозгу. Возможно, все математические и символические вычисления, которые производит мозг, могут быть воспроизведены машиной Тьюринга. Но эта машина не сможет вычислить все: как показал Гедель, человеку известна истинность утверждений, которые не могут быть доказаны математическими символами. В конечном итоге мы отсеиваем информацию способами, не известными машине Тьюринга. Способами, не известными нам самим.


Перейти на страницу:
Изменить размер шрифта: