So much for the mathematicians. These hypotheses, according to some people, underestimated the resources of the human mind; they bowed to the unknown, proclaiming the ancient doctrine, arrogantly resurrected, of ignoramus et ignorabimus. Others regarded the mathematicians’ hypotheses as sterile and dangerous nonsense, contributing towards the creation of a modern mythology based on the notion of this giant brain — whether plasmic or electronic was immaterial — as the ultimate objective of existence, the very synthesis of life.
Yet others… but the would-be experts were legion and each had his own theory. A comparison of the ‘contact’ school of thought with other branches of Solarist studies, in which specialization had rapidly developed, especially during the last quarter of a century, made it clear that a Solarist-cybernetician had difficulty in making himself understood to a Solarist-symmetriadologist. Veubeke, director of the Institute when I was studying there, had asked jokingly one day: “How do you expect to communicate with the ocean, when you can’t even understand one another?” The jest contained more than a grain of truth.
The decision to categorize the ocean as a metamorph was not an arbitrary one. Its undulating surface was capable of generating extremely diverse formations which resembled nothing ever seen on Earth, and the function of these sudden eruptions of plasmic ‘creativity,’ whether adaptive, explorative or what, remained an enigma.
Lifting the heavy volume with both hands, I replaced it on the shelf, and thought to myself that our scholarship, all the information accumulated in the libraries, amounted to a useless jumble of words, a sludge of statements and suppositions, and that we had not progressed an inch in the 78 years since researches had begun. The situation seemed much worse now than in the time of the pioneers, since the assiduous efforts of so many years had not resulted in a single indisputable conclusion.
The sum total of known facts was strictly negative. The ocean did not use machines, even though in certain circumstances it seemed capable of creating them. During the first two years of exploratory work, it had reproduced elements of some of the submerged instruments. Thereafter, it simply ignored the experiments we went on pursuing, as though it had lost all interest in our instruments and our activities — as though, indeed, it was no longer interested in us. It did not possess a nervous system (to go on with the inventory of ‘negative knowledge’) or cells, and its structure was not proteiform. It did not always react even to the most powerful stimuli (it ignored completely, for example, the catastrophic accident which occurred during the second Giese expedition: an auxiliary rocket, falling from a height of 300,000 metres, crashed on the planet’s surface and the radioactive explosion of its nuclear reserves destroyed the plasma within a radius of 2500 metres).
Gradually, in scientific circles, the ‘Solaris Affair’ came to be regarded as a lost cause, notably among the administrators of the Institute, where voices had recently been raised suggesting that financial support should be withdrawn and research suspended. No one, until then, had dared to suggest the final liquidation of the Station; such a decision would have smacked too obviously of defeat. But in the course of semi-official discussions a number of scientists recommended an ‘honorable’ withdrawal from Solaris.
Many people in the world of science, however, especially among the young, had unconsciously come to regard the ‘affair’ as a touchstone of individual values. All things considered, they claimed, it was not simply a question of penetrating Solarist civilization; it was essentially a test of ourselves, of the limitations of human knowledge. For some time, there was a widely held notion (zealously fostered by the daily press) to the effect that the ‘thinking ocean’ of Solaris was a gigantic brain, prodigiously well-developed and several million years in advance of our own civilization, a sort of ‘cosmic yogi,’ a sage, a symbol of omniscience, which had long ago understood the vanity of all action and for this reason had retreated into an unbreakable silence. The notion was incorrect, for the living ocean was active. Not, it is true, according to human ideas — it did not build cities or bridges, nor did it manufacture flying machines. It did not try to reduce distances, nor was it concerned with the conquest of Space (the ultimate criterion, some people thought, of man’s superiority). But it was engaged in a never-ending process of transformation, an ‘ontological autometamorphosis.’ (There were any amount of scientific neologisms in accounts of Solarist activities.) Moreover, any scientist who devotes himself to the study of Solariana has the indelible impression that he can discern fragments of an intelligent structure, perhaps endowed with genius, haphazardly mingled with outlandish phenomena, apparently the product of an unhinged mind. Thus was born the conception of the ‘autistic ocean’ as opposed to the ‘ocean-yogi.’
These hypotheses resurrected one of the most ancient of philosophical problems: the relation between matter and mind, and between mind and consciousness. Du Haart was the first to have the audacity to maintain that the ocean possessed a consciousness. The problem, which the methodologists hastened to dub metaphysical, provoked all kinds of arguments and discussions. Was it possible for thought to exist without consciousness? Could one, in any case, apply the word thought to the processes observed in the ocean? Is a mountain only a huge stone? Is a planet an enormous mountain? Whatever the terminology, the new scale of size introduced new norms and new phenomena.
The question appeared as a contemporary version of the problem of squaring the circle. Every independent thinker endeavored to register his personal contribution to the hoard of Solarist studies. New theories proliferated: the ocean was evidence of a state of degeneration, of regression, following a phase of ‘intellectual repletion’; it was a deviant neoplasm, the product of the bodies of former inhabitants of the planet, whom it had devoured, swallowed up, dissolving and blending the residue into this unchanging, self-propagating form, supracellular in structure.
By the white light of the fluorescent tubes — a pale imitation of terrestrial daylight — I cleared the table of its clutter of apparatus and books. Arms outstretched and my hands gripping the chromium edging, I unrolled a map of Solaris on the plastic surface and studied it at length. The living ocean had its peaks and its canyons. Its islands, which were covered with a decomposing mineral deposit, were certainly related to the nature of the ocean bed. But did it control the eruption and subsidence of the rocky formations buried in its depths? No one knew. Gazing at the big flat projection of the two hemispheres, colored in various tones of blue and purple, I experienced once again that thrill of wonder which had so often gripped me, and which I had felt as a schoolboy on learning of the existence of Solaris for the first time.
Lost in contemplation of this bewildering map, my mind in a daze, I temporarily forgot the mystery surrounding Gibarian’s death and the uncertainty of my own future.
The different sections of the ocean were named after the scientists who had explored them. I was examining Thexall’s swell, which surrounded the equatorial archipelagos, when I had a sudden sensation of being watched.
I was still leaning over the map, but I no longer saw it; my limbs were in the grip of a sort of paralysis. The crates and a small locker still barricaded the door, which was in front of me. It’s only a robot, I told myself — yet I had not discovered any in the room and none could have entered without my knowledge. My back and my neck seemed to be on fire; the sensation of this relentless, fixed stare was becoming unbearable. With my head shrinking between my hunched shoulders, I leant harder and harder against the table, until it began slowly to slide away. The movement released me; I spun round.