Разработан важный раздел Ф, а., в котором изучаются пространства с конической структурой «x

Большая Советская Энциклопедия (ФУ) i-images-191347867.png
 0» (полуупорядоченностью). Пример такого пространства — действительное С (Т), в нём считается x
Большая Советская Энциклопедия (ФУ) i-images-106175035.png
 0, если x (t ³)0 для всех t ÎT.

  3. Операторы (общие понятия). Функционалы. Пусть X, Y — линейные пространства; отображение A: X ® Y называется линейным, если для x, у Î X, l, m Î

Большая Советская Энциклопедия (ФУ) i-images-153576874.png
,

где x1,..., xn и (Ax)1,..., (Ax) n — координаты векторов x и Ax соответственно. При переходе к бесконечномерным линейным топологическим пространствам положение значительно усложняется. Здесь прежде всего необходимо различать непрерывные и разрывные линейные операторы (для конечномерных пространств они всегда непрерывны). Так, действующий из пространства L2 (а, b) в него же оператор

Большая Советская Энциклопедия (ФУ) i-images-122478089.png
     (2)

(где K (t, s) — ограниченная функция — ядро А) — непрерывен, в то время как определённый на подпространстве C1(a, b) Ì L2(a, b) оператор дифференцирования

Большая Советская Энциклопедия (ФУ) i-images-190279976.png
     (3)

является разрывным (вообще, характерной особенностью разрывных операторов является то, что они не определены на всём пространстве).

  Непрерывный оператор A: X ® Y, где X, Y — банаховы пространства, характеризуется тем, что

Большая Советская Энциклопедия (ФУ) i-images-141078890.png
,

поэтому его называют также ограниченным. Совокупность всех ограниченных операторов

Большая Советская Энциклопедия (ФУ) i-images-165158283.png
 (X, Y) относительно обычных алгебраических операций образует банахово пространство с нормой ||A||. Свойства
Большая Советская Энциклопедия (ФУ) i-images-190282100.png
, если
Большая Советская Энциклопедия (ФУ) i-images-155381362.png
 для каждого x Î X], относительно которой шар, т. е. множество точек x Î Х таких, что ||x|| £ r, уже будет компактным (такого эффекта никогда не будет в бесконечномерном пространстве относительно топологии, порождаемой нормой). Это позволяет более детально изучить ряд геометрических вопросов для множеств из X', например установить структуру произвольного компактного выпуклого множества как замкнутой оболочки своих крайних точек (теорема Крейна — Мильмана).

  Важной задачей Ф. а. является отыскание общего вида функционалов для конкретных пространств. В ряде случаев (помимо гильбертова пространства) это удаётся сделать, например (lp)¢, p > 1, состоит из функций вида å

Большая Советская Энциклопедия (ФУ) i-images-134254484.png
xjej, где
Большая Советская Энциклопедия (ФУ) i-images-188924955.png
,
Большая Советская Энциклопедия (ФУ) i-images-103204680.png
. Однако для большинства банаховых (и в особенности линейных топологических) пространств функционалы будут элементами новой природы, не конструирующимися просто средствами классического анализа. Так, например, при фиксированных t и m на пространстве D (
Большая Советская Энциклопедия (ФУ) i-images-126737485.png
) определён функционал
Большая Советская Энциклопедия (ФУ) i-images-180842007.png
. В случае m = 0 его ещё можно записать «классическим» образом — при помощи интеграла, однако при m ³ 1 это уже невозможно. Элементы из (D (
Большая Советская Энциклопедия (ФУ) i-images-124053941.png
))¢ называются обобщёнными функциями (распределениями). Обобщённые функции как элементы сопряжённого пространства можно строить и тогда, когда D (
Большая Советская Энциклопедия (ФУ) i-images-166770562.png
) заменено другим пространством Ф, состоящим как из бесконечно, так и конечное число раз дифференцируемых функций; при этом существенную роль играют тройки пространств Ф' É Н É Ф, где Н — исходное гильбертово пространство, а Ф — линейное топологическое (в частности, гильбертово с др. скалярным произведением) пространство, например

Ф = Wl2(T).

  Дифференциальный оператор D, фигурирующий в (3), будет непрерывным, если его понимать действующим в L2[a, b] из пространства C1[a, b], снабженного нормой

Большая Советская Энциклопедия (ФУ) i-images-129117774.png
,
Большая Советская Энциклопедия (ФУ) i-images-131824655.png
 Однако для многих задач, и прежде всего для спектральной теории, такие дифференциальные операторы необходимо интерпретировать как действующие в одном и том же пространстве. Эти и другие близкие задачи привели к построению общей теории неограниченных, в частности неограниченных самосопряжённых, и эрмитовых операторов.

  4. Специальные классы операторов. Спектральная теория. Многие задачи приводят к необходимости изучать разрешимость уравнения вида Cx = y, где С — некоторый оператор, у Î Y — заданный, а x Î Х — искомый векторы. Например, если Х = Y = L2 (а, b), С = ЕА, где А — оператор из (2), а Е — тождественный оператор, то получается интегральное уравнение Фредгольма 2-го рода; если С — дифференциальный оператор, то получается дифференциальное уравнение, и т.п. Однако здесь нельзя рассчитывать на достаточно полную аналогию с линейной алгеброй, не ограничивая класс рассматриваемых операторов. Одним из важнейших классов операторов, наиболее близких к конечномерному случаю, являются компактные (вполне непрерывные) операторы, характеризующиеся тем, что переводят каждое ограниченное множество из Х в множество из Y, замыкание которого компактно [таков, например, оператор А из (2)]. Для компактных операторов построена теория разрешимости уравнения xAx = у, вполне аналогичная конечномерному случаю (и содержащая, в частности, теорию упомянутых интегральных уравнений) (Ф. Рис).

  В разнообразных задачах математической физики возникает т. н. задача на собственные значения: для некоторого оператора А: Х ® Х требуется выяснить возможность нахождения решения j ¹ 0 (собственного вектора) уравнения Аj = lj при некотором l Î

Большая Советская Энциклопедия (ФУ) i-images-103028669.png
ljxjej,     (4)

где lj, — собственное значение, отвечающее ej. Для конечномерного Х вопрос о таком представлении полностью выяснен, при этом в случае кратных собственных значений для получения базиса в Х нужно, вообще говоря, добавить к собственным т. н. присоединённые векторы. Набор SpA собственных значений в этом случае называется спектром А.

  Первое перенесение этой картины на бесконечномерный случай было дано для интегральных операторов типа А из (2) с симметричным ядром [т. е. K (t, s) = K (s, t) и действительно] (Д. Гильберт). Затем подобная теория была развита для общих компактных самосопряжённых операторов в гильбертовом пространстве. Однако при переходе к простейшим некомпактным операторам возникли трудности, связанные с. самим определением спектра. Так, ограниченный оператор в L2[a, b]


Перейти на страницу:
Изменить размер шрифта: