(Tx)(t) = tx (t) (5)
не имеет собственных значений. Поэтому определение спектра было пересмотрено, обобщено и выглядит сейчас следующим образом.
Пусть Х — банахово пространство, А Î
При этом алгебраические операции над функциями переходят в аналогичные операции над операторами [т. е. отображение f (z) ® f (A) — гомоморфизм]. Эти конструкции не дают возможности выяснить, например, вопросы полноты собственных и присоединённых векторов для общих операторов, однако для самосопряжённых операторов, представляющих основной интерес, например, для квантовой механики, подобная теория полностью разработана.
Пусть Н — гильбертово пространство. Ограниченный оператор А: Н ® Н называется самосопряжённым, если (Ax, у) = (x, Ау) (в случае неограниченного А определение более сложно). Если Н n-мерно, то в нём существует ортонормированный базис собственных векторов самосопряжённого оператора А; другими словами, имеют место разложения:
где P (lj) — оператор проектирования (проектор) на подпространство, натянутое на все собственные векторы оператора А, отвечающие одному и тому же собственному значению lj.
Оказывается, что эти формулы могут быть обобщены на произвольный самосопряжённый оператор из Н, только сами проекторы P (lj) могут не существовать, поскольку могут отсутствовать и собственные векторы [таков, например, оператор Т в (5)]. В формулах (7) суммы заменяются теперь интегралами Стилтьеса по неубывающей операторнозначной функции Е (l) [которая в конечномерном случае равна
5. Нелинейный функциональный анализ. Одновременно с развитием и углублением понятия пространства шло развитие и обобщение понятия функции. В конечном счёте оказалось необходимым рассматривать отображения (не обязательно линейные) одного пространства в другое (часто — в исходное). Одной из центральных задач нелинейного Ф. а. является изучение таких отображений. Как и в линейном случае, отображение пространства в
Важной задачей нелинейного Ф. а. является задача отыскания неподвижных точек отображения (точка x называется неподвижной для отображения F, если Fx = x). К отысканию неподвижных точек сводятся многие задачи о разрешимости операторных уравнений, а также задачи отыскания собственных значений и собственных векторов нелинейных операторов. При решении уравнений с нелинейными операторами, содержащими параметр, возникает существенное для нелинейного Ф. а. явление — т. н. точки ветвления (решений).
При исследовании неподвижных точек и точек ветвления используются топологические методы: обобщения на бесконечномерные пространства теоремы Брауэра о существовании неподвижных точек отображений конечномерных пространств, степени отображений и т.п. Топологические методы Ф. а. развивались польским математиком Ю. Шаудером, французским математиком Ж. Лере, советскими математиками М. А. Красносельским, Л. А. Люстерником и др.
6. Банаховы алгебры. Теория представлений. На ранних этапах развития Ф. а. изучались задачи, для постановки и решения которых необходимы были лишь линейные операции над элементами пространства. Исключение составляют, пожалуй, только теория колец операторов (факторов) (Дж. Нейман, 1929) и теория абсолютно сходящихся рядов Фурье (Н. Винер, 1936). В конце 30-x гг. в работах японского математика М. Нагумо, советских математиков И. М, Гельфанда, Г. Е. Шилова, М. А. Наймарка и др. стала развиваться теория т. н. нормированных колец (современное название — банаховы алгебры), в которой, кроме операций линейного пространства, аксиоматизируется операция умножения (причём ||xy|| £ ||x|| ||y||). Типичными представителями банаховых алгебр являются кольца ограниченных операторов, действующих в банаховом пространстве Х (умножение в нём — последовательное применение операторов — необходимо с учётом порядка), различного рода функциональные пространства, например C (T) с обычным умножением, L1(
Пусть