Большая Советская Энциклопедия (УП)
Упа
Упа', река в Тульской области РСФСР, правый приток р. Оки (бассейн Волги). Длина 345 км, площадь бассейна 9510 км2. Протекает в пределах Среднерусской возвышенности, делая большие петли. Питание преимущественно снеговое. Половодье с конца марта до начала мая. Средний расход воды в 89 км от устья 40,2 м3/сек. Замерзает в конце ноября – декабре, иногда в январе, вскрывается в конце марта – апреле. Воды используются для водоснабжения. На У. – гг. Советск, Тула; у г. Советска водохранилище (площадь 5,7 км2).
Упаковки плотнейшие
Упако'вки плотне'йшие в кристаллографии, формы расположения атомов в кристаллической решётке, которые характеризуются наибольшим числом атомов в единице объёма кристалла. У. п. отчётливо выражены в большом числе кристаллических структур. Они характерны для большинства металлов, а также для кристаллизованных инертных газов. Структуры многих неорганических (ионных) кристаллов представляют собой У. п. шаровых анионов (с большими ионными радиусами), в пустотах которых распределяются мелкие катионы.
Более 300 лет известна (И. Кеплер) и признаётся наиболее плотной упаковка шаров «вручную» (рис. 1), когда на слой шаров, уложенных с квадратным мотивом, наложен другой такой же слой шаров в лунки нижележащего (коэффициент заполнения пространства 74,05%, рис. 2).
Очевидно, что шары третьего слоя будут лежать точно над шарами первого. Такая упаковка обычно называется кубической плотнейшей гранецентрированной. Она считалась единственной, пока в 1900 англ. кристаллограф У. Барлоу не показал, что, поставив куб на угол, его можно разобрать на плоские ещё более плотные слои (рис. 3), в которых лунок между шарами в два раза больше числа самих шаров (рис. 4). Варьируя укладку плотноупакованных слоев (рис. 5), получают бесчисленное множество плотнейщих упаковок с одинаковым коэффициентом заполнения – 74,05%. Если ограничить наслаивание некоторым периодом, то получается: двухслойная плотнейшая упаковка (рис. 6, а, третий слой повторяет первый), трёхслойная (рис. 6, б, четвёртый слой повторяет первый), четырёхслойная (рис. 6, в) и т.д. Трёхслойная упаковка – это исходная кубическая, прочие – все гексагональные.
Благородные металлы Ag, Au, Pt, a также Cu, Al, Pb,g-Fe характеризуются трёхслойной – кубической плотнейшей упаковкой атомов. Двухслойной упаковке подчиняются Be, Mg, Zn, Ti, четырёхслойной – редкоземельные металлы: La, Ce и др. Весьма часто полиморфизм (уже не только чистых металлов, но и соединений с простейшей формулой АХ) сводится к смене типа плотнейшей упаковки 6-, 8-, 15-слойными вплоть до числа слоев в несколько десятков (карборунд SiC). Кристаллические решётки некоторых соединений характеризуются менее плотной объёмноцентрированной укладкой (рис. 7) с коэффициентов заполнения 68% (a-железо, щелочные металлы).
Поскольку наиболее распространены двух- и трёхслойные упаковки со стандартным расположением анионных шаров, то структура химического соединения зачастую определяется распределением др. элементов структуры, главным образом катионов, по пустотам плотнейшей упаковки (см. Структуры кристаллов). Их 2 сорта: среди 6 шаров (октаэдрической пустоты) и среди 4 шаров (тетраэдрические пустоты); вторых в 2 раза больше, чем первых (как показано на рис. 8 – с анионами в вершинах плотноупакованных полиэдров). При описании структур ограничиваются обычно выделением в таких слоях заполненных полиэдров, которые раскрашивают в разные цвета соответственно сортности заселяющих атомов (рис. 9).
Лит.: Белов Н. В., Структура ионных кристаллов и металлических фаз, М., 1947.
Н. В. Белов.
Рис. 7. Объёмноцентрированная упаковка.
Рис. 6. Плотнейшие шаровые упаковки: а — двухслойная, б — трёхслойная, в — четырёхслойная.
Рис. 2. Генерирующие плотнейшую кубическую упаковку плоские слои с квадратной симметрией.
Рис. 4. Плотнейшая гексагональная упаковка.
Рис. 3. Генерирующие плотнейшую упаковку плоские слои с гексагональной симметрией.
Рис. 8. Слой из плотноупакованных октаэдров и тетраэдров в отношении 1:2.
Рис. 1. Плотнейшая кубическая упаковка. Элементарная ячейка.
Рис. 9. Раскраска заселённых тетраэдров плотноупакованной структуры станнина Cu2FeSnS4 в три цвета.
Рис. 5. Плоский плотноупакованный слой с числом лунок в два раза большим числа шаров.
Упанишады
Упаниша'ды, индийские прозаические и стихотворные религиозно-философсие трактаты. Часть ведической литературы (см. Веды). Термин «У.» [санскр., буквально – сидение (ученика) подле (учителя)] понимается в Индии как «сокровенное знание», доступное только посвященным. Возникли в древности (приблизительно в 7–3 вв. до н. э.); значительную философскую и художественную ценность имеют т. н. главные У., непосредственно связанные с разными ведическими школами. В центре У. – философские проблемы ведической религии, познание человеком самого себя и окружающего мира; толкования жреческого ритуала оказываются в них на втором плане. Главная доктрина У. – учение о единстве Брахмана (абсолютного и объективного начала Вселенной) и Атмана (субъекта, индивидуума). Отвлечённые идеи поясняются с помощью притч и аллегорий, причём специфическим художественным приёмом служит отождествление явлений и понятий разных уровней, своего рода «игра понятиями», получающая оправдание и смысл в свете философской концепции У. о единстве мира. Значение У. не ограничивается Индией. Полагают, что ещё в древности и средние века знакомство с ними обогатило учения иранских суфиев, неоплатоников и христианских богословов; в новое время их влияние сказалось на взглядах многих европейских и американских философов, начиная с А. Шопенгауэра и Р. У. Эмерсона.
Изд.: Upanishads. The prinsipal Upanishads, ed. with introd., text, transi. and notes by S. Radhakrishnan, L., 1953; в рус. пер. – Брихадараньяка Упанишада. Предисл. и коммент. А. Я. Сыркина, М., 1964; Чхандогья Упанишада. Предисл. и коммент. А. Я. Сыркина, М., 1965; Упанишады. [Предисл. и коммент. А. Я. Сыркина], М., 1967.
Лит.: Сыркин А. Я., Некоторые проблемы изучения упанишад, М., 1971; Keith А. В., The religion and philosophy of the Veda and Upanishads, Half. 1–2, Camb. (Mass.), 1925.
П. А. Гринцер.