К довольно неожиданным эффектам, с которыми приходится бороться, могут привести сжимающие напряжения в корпусе подводной лодки. Когда лодка находится в надводном положении, она плавает, как любое другое судно, поскольку ее вес меньше веса воды, которая может быть вытеснена объемом лодки. Чтобы лодка погрузилась, балластные цистерны заполняют водой настолько, чтобы вес лодки был равен весу воды в ее объеме. Тогда "удельный вес" лодки будет равен удельному весу воды, и лодка не будет иметь запаса плавучести.

Теперь лодка может опускаться на глубину и маневрировать примерно так же, как это проделывает дирижабль в воздухе. Однако, погружаясь глубже, лодка испытывает все большее и большее давление воды, и сжимающие напряжения в ее корпусе растут. Поскольку давление внутри лодки остается примерно постоянным, корпус ее сжимается, уменьшается объем, а следовательно, уменьшается и выталкивающая сила. Если вес лодки вместе с балластом не изменяется, она стремится провалиться глубже, и при некоторых обстоятельствах этот процесс может стать опасным. На предельной для подводной лодки глубине погружения величина деформации сжатия может составить около 0,7%. Деформация происходит во всех трех направлениях, поэтому объем лодки может уменьшиться примерно на 2%. Так как сжимаемость воды очень невелика, то для лодки весом 1000 т это будет означать потерю выталкивающей силы примерно 20 т[13]. Если эту силу не компенсировать, частично опорожняя балластные цистерны от воды, подводная лодка будет опускаться все глубже и глубже, пока ее не раздавит давлением воды. В этом, между прочим, заключается одна из трудностей постройки подводной лодки из стеклопластиков, которые всем, пожалуй, хороши, кроме модуля упругости: он слишком мал.

Иногда думают, что затонувшие подводные лодки "висят" где-то поблизости от океанского дна. Это, конечно, нелепое представление: если корпус потерпевшей аварию лодки и не сомнет давлением воды, что случается чаще всего, то он будет непрерывно сжиматься, выталкивающая сила будет падать и лодка будет опускаться на дно все быстрее и быстрее.

Воздушные шары, пневматические шины и т. п. представляют особый случай конструкции, в которой растягивающие напряжения в оболочке уравновешены давлением наполняющего их газа или жидкости. Поэтому большие баржи-мешки и надувные лодки обычно очень легкие и эффективные конструкции. Изобретение крыш, поддерживаемых изнутри воздухом, заставляет пересмотреть прежние архитектурные традиции, в этих конструкциях все элементы работают на растяжение, лишь воздух внутри здания сжат.

(обратно)

Балки и изгиб

Итак, мы знаем теперь, что понять, как работает конструкция на растяжение и сжатие, довольно легко. Но вот как те же самые растяжение и сжатие позволяют балкам выдерживать нагрузки - это далеко не очевидно. А между тем разного рода балки (рис. 11) составляют львиную долю всех конструкций, с которыми мы повседневно сталкиваемся. Самая обычная половая доска - наглядный пример балки, и таких примеров можно привести огромное множество. Мы уже говорили, что задача этой самой доски заключается в том, чтобы давить на наши подошвы вверх с силой, в точности равной нашему весу. Естественно, эту роль пол должен играть постоянно, в том числе и тогда, когда мы стоим посреди комнаты, далеко от стены, которая в конечном счете будет воспринимать силу нашего веса. Но позвольте, как эта сила передается от стены на наши ноги, и обратно?

Почему мы не проваливаемся сквозь пол doc2fb_image_0300000B.png

Рис. 11. Свободно опертая балка.

Ответ на этот вопрос дает так называемая теория балок, которую, пожалуй, можно назвать становым хребтом техники. Но, к сожалению, этот "хребет" представляет собой pons asinorum[14] для студентов технических вузов. Большинство из них механически заучивают формулы теории балок лишь для того, чтобы проскочить на экзаменах; понимать эти формулы они начинают гораздо позже, когда настает время мучаться над собственными проектами. Поэтому давайте пока оставим всю эту кухню интегрирования эпюр и попытаемся подступиться к существу проблемы.

Начнем с того, что вспомним высказанную ранее мысль об отсутствии четкого различия между понятиями "материал" и "конструкция". Большие балки, например перекрытия железнодорожных мостов, подобно детскому конструктору, собираются из многих малых стержней. Эти стержни работают как на растяжение, так и на сжатие. Способ передачи нагрузки в такой решетчатой балке, или ферме, по существу не отличается от того, как передается нагрузка в сплошной балке, даже такой, как половая доска. В решетчатой балке вся нагрузка передается только путем сжатия и растяжения стержней. В сплошной балке такой решетки нет, но мы можем представить себе ее как бы прошивающей всю балку.

Для определенности начнем анализ с консольной балки, то есть с балки, один конец которой встроен в стену или жестко закреплен каким-либо другим способом на любом основании (на языке инженеров это называется "заделка"): к другому концу консоли приложена нагрузка. Такую консоль рисовал еще Галилей (рис. 12); правда, он неверно рассчитал прочность своей консоли, что, впрочем, ему простительно. Мы же построим нашу консоль только из стержней и натянутых струн.

Почему мы не проваливаемся сквозь пол doc2fb_image_0300000C.png

Рис. 12. Рисунок Галилея, иллюстрирующий испытания консольной балки.

Рассмотрим простую конструкцию типа крана, изображенную на рис. 13, а. Сжатый стержень 2 опирается на стену и поддерживается струной 1, таким образом он может воспринимать внешнюю нагрузку (назовем ее W). Очевидно, сила, противодействующая нагрузке W, возникает вследствие сжатия наклонного стержня 2. Натяжение горизонтальной струны 1 лишь предохраняет сжатый стержень 2 от поворота и падения.

С таким же успехом мы можем воспользоваться другой треугольной конструкцией (рис. 13, б), в которой сжатый стержень 4 занимает горизонтальное положение и удерживается от падения наклонной растянутой струной 3. В этом случае сила, удерживающая вес W, обеспечивается струной, а горизонтальный сжатый стержень необходим лишь для того, чтобы струна не прижималась к стене.

Обе эти конструкции одинаково хороши, и мы можем объединить их в одну, способную выдержать вес 2W, как показано на рис. 13, в. Ясно, что нагрузка 2W непосредственно воспринимается наклонными элементами 2 и 3, один из которых сжат, а другой растянут. Горизонтальные элементы 1 и 4 воздействуют на стену, один из них давит, другой - тянет, вместе они обеспечивают целостность конструкции, но не поддерживают вес груза непосредственно.

Почему мы не проваливаемся сквозь пол doc2fb_image_0300000D.png

Рис. 13. Сопоставление напряженного состояния в сплошной балке и решетчатой ферме.

Пристроив к полученной конструкции еще одну, точно такую же, мы получим новую ферму, показанную на рис. 13, г. В этом случае тот же самый груз 2W поддерживается сжатыми и растянутыми наклонными элементами 2, 3, 6 и 7, в то время как элементы 1, 5, 4 и 8 сжаты и растянуты в горизонтальном направлении и, хотя они не поддерживают внешнюю нагрузку непосредственно, благодаря им ферма не рушится. Получается, что каждый элемент выполняет свою функцию и, если хотя бы один стержень или одна струна выйдет из строя, катастрофа неизбежна: каждый элемент по-своему важен.

Теперь посмотрим, как передается в нашей ферме нагрузка от элемента к элементу. Правая ячейка на рис. 13, г работает точно так же, как единственная ячейка на рис. 13, в. Однако в левой (внутренней) ячейке на рис. 13, г дело обстоит иначе. Растягивающее напряжение в струне 1 вдвое больше напряжения в струне 5, а сжатие в стержне 4 в два раза превышает сжатие в стержне 8. Это происходит потому, что диагональные элементы (назовем их "сдвиговыми") добавляют нагрузку на элементы, расположенные по направлению к месту заделки консоли. Однако во всех сдвиговых элементах независимо от длины фермы нагрузка одинакова.


Перейти на страницу:
Изменить размер шрифта: