Но это противоречие кажущееся. Дело в том, что и расстояние между двумя любыми объектами, и скорость его изменения — это величины, зависящие от системы отсчета.
Если бы четыре?
Общеизвестно, что мир, в котором мы живем, трехмерен. Окружающее нас пространство обладает тремя измерениями — длиной, шириной и высотой.
Ну, а если бы наш мир имел больше трех измерений? Как повлияло бы «лишнее» измерение на течение различных физических процессов?..
Рис. 20. Воображаемые двумерные существа.
На страницах современных научно-фантастических произведений довольно часто можно встретиться с почти мгновенным преодолением огромных космических расстояний с помощью так называемой «нуль-транспортировки» или перехода через «гиперпространство», или «подпространство», или «надпространство».
Что имеют в виду фантасты? Ведь хорошо известно, что максимальной скоростью, с которой могут перемещаться любые реальные тела, является скорость света в пустоте, и то практически она недостижима. О каких же «скачках» через миллионы и сотни миллионов световых лет может идти речь? Разумеется, идея эта — фантастическая. Однако в ее основе лежат довольно интересные физико-математические соображения.
Начнем с того, что представим себе одномерное существо-точку, живущее в одномерном пространстве, т. е. на прямой линии. В этом «тесном» мире имеются только одно измерение — длина и только два возможных направления — вперед и назад.
У двумерных воображаемых существ, «плоскатиков», возможностей значительно больше. Они уже могут перемещаться в двух измерениях, в их мире помимо длины есть еще и ширина. Но они точно так же не способны выйти в третье измерение, как и существа-точки не могут «выпрыгнуть» за пределы своей прямой линии. Одномерные и двумерные обитатели в принципе могут прийти к теоретическому заключению о возможности существования большего числа измерений, но путь в следующее измерение для них закрыт.
По обе стороны от плоскости расположено трехмерное пространство, в котором обитаем мы, трехмерные существа, неведомые для двумерного жителя, заключенного в свой двумерный мир: ведь даже видеть он может только в пределах своего пространства. Ввиду этого о существовании трехмерного мира и его обитателей двумерный житель мог бы узнать только в том случае, если бы какой-нибудь человек, к примеру, проткнул плоскость пальцем. Но и тогда двумерное существо могло бы наблюдать только двумерную область соприкосновения между пальцем и плоскостью. Вряд ли этого было бы достаточно, чтобы сделать какие-то заключения о «потустороннем», с точки зрения двумерного жителя, трехмерном пространстве и его «таинственных» обитателях.
Но точно такое же рассуждение можно провести и для нашего трехмерного пространства, если бы оно было заключено в каком-то еще более обширном, четырехмерном пространстве, подобно тому как двумерная поверхность заключена в нем самом.
Однако выясним сперва, что вообще представляет собой четырехмерное пространство. В трехмерном пространстве существуют три взаимно перпендикулярных «основных» измерения — «длина», «ширина» и «высота» (три взаимно перпендикулярных направления осей координат). Если бы к этим трем направлениям можно было добавить четвертое, также перпендикулярное к каждому из них, то пространство имело бы четыре измерения, было бы четырехмерным.
С точки зрения математической логики рассуждение о четырехмерном пространстве абсолютно безукоризненно. Но само по себе оно ничего не доказывает, поскольку логическая непротиворечивость еще не является доказательством существования в физическом смысле. Такое доказательство способен дать только опыт. А опыт свидетельствует о том, что в нашем пространстве через одну точку можно провести лишь три взаимно перпендикулярные прямые линии.
Обратимся еще раз к помощи «плоскатиков». Для этих существ третье измерение (в которое они не могут выйти) — все равно что для нас четвертое. Однако есть и существенная разница между воображаемыми плоскими существами «плоскатиками» и нами, обитателями трехмерного пространства. В то время как плоскость является двумерной частью реально существующего трехмерного мира, все имеющиеся в нашем распоряжении научные данные убедительно свидетельствуют о том, что мир, в котором мы живем, геометрически трехмерен и не является частью какого-то четырехмерного мира. Если бы такой четырехмерный мир действительно существовал, то в нашем трехмерном мире могли бы происходить некоторые «странные» явления.
Рис. 21. Четвертое измерение.
Вернемся снова к двумерному плоскому миру. Хотя его обитатели и не могут выходить за пределы плоскости, все же, благодаря наличию внешнего трехмерного мира, некоторые явления, в принципе, могут здесь протекать с выходом в третье измерение. Это обстоятельство в ряде случаев делает возможным такие процессы, которые в самом по себе двумерном мире не могли бы происходить.
Представим себе, например, нарисованный в плоскости обыкновенный циферблат от часов. Какими бы способами мы ни вращали и перемещали этот циферблат, оставаясь в плоскости, нам никогда не удастся изменить направление расположения цифр так, чтобы они следовали друг за другом против часовой стрелки. Этого можно добиться, лишь «изъяв» циферблат из плоскости в трехмерное пространство, перевернув его, а затем снова возвратив в нашу плоскость.
В трехмерном пространстве подобной операции соответствовала бы, например, такая. Можно ли перчатку, предназначенную для правой руки, путем одних только перемещений в пространстве (т. е. не выворачивая наизнанку) превратить в перчатку для левой руки? Каждый легко может убедиться в том, что подобная операция неосуществима. Однако при наличии четырехмерного пространства этого можно было бы достичь так же просто, как и в случае с циферблатом.
Рис. 22. Опыт с перчаткой.
Мы не знаем выхода в четырехмерное пространство. Но дело не только в этом. Его, видимо, не знает и природа. Во всяком случае, никаких явлений, которые можно было бы объяснить существованием четырехмерного мира, охватывающего наш трехмерный, мы не знаем.
А жаль!..
Если бы четырехмерное пространство и выход в него действительно существовали, открывались бы удивительные возможности.
Представим себе «плоскатика», которому необходимо преодолеть расстояние между двумя точками плоского мира, отстоящими друг от друга, скажем, на 50 км. Если «плоскатик» перемещается со скоростью один метр в сутки, то подобное путешествие займет более ста лет. Но представьте себе, что двумерная поверхность свернута в трехмерном пространстве таким образом, что точки начала и конца маршрута оказались друг от друга на расстоянии всего лишь одного метра. Теперь их отделяет друг от друга совсем небольшое расстояние, которое «плоскатик» мог бы преодолеть всего за одни сутки. Но этот метр лежит в третьем измерении! Это и была бы «нуль-транспортировка», или «гиперпереход».
Аналогичная ситуация могла бы возникнуть и в искривленном трехмерном мире…
Рис. 23. Геометрический смысл фантастического метода нуль-транспортировки.
Как показала общая теория относительности, наш мир действительно обладает кривизной. Об этом мы уже знаем. И если бы еще существовало четырехмерное пространство, в которое погружен наш трехмерный мир, то для преодоления некоторых гигантских космических расстояний достаточно было бы «перескочить» через разделяющую их четырехмерную щель. Вот что имеют в виду писатели-фантасты.
Таковы соблазнительные преимущества четырехмерного мира. Но есть у него и «недостатки». Оказывается, с ростом числа измерений уменьшается устойчивость движения. Многочисленные исследования показывают, что в двумерном пространстве вообще никакое возмущение не может нарушить равновесия и удалить тело, движущееся по замкнутой траектории вокруг другого тела, в бесконечность. В пространстве трех измерений ограничения уже значительно слабее, но все же и здесь траектория движущегося тела не уходит в бесконечность, если только возмущающая сила не слишком велика.